化工学报 ›› 2013, Vol. 64 ›› Issue (3): 788-800.doi: 10.3969/j.issn.0438-1157.2013.03.003

• 综述与专论 • 上一篇    下一篇

化工过程软测量建模方法研究进展

曹鹏飞, 罗雄麟   

  1. 中国石油大学自动化研究所,北京 102249
  • 收稿日期:2012-06-04 修回日期:2012-07-20 出版日期:2013-03-05
  • 通讯作者: 罗雄麟
  • 作者简介:曹鹏飞(1988—),男,博士研究生。
  • 基金资助:

    国家重点基础研究发展计划项目(2012CB720500)。

Modeling of soft sensor for chemical process

CAO Pengfei, LUO Xionglin   

  1. Research Institute of Automation, China University of Petroleum, Beijing 102249, China
  • Received:2012-06-04 Revised:2012-07-20 Online:2013-03-05
  • Supported by:

    supported by the National Basic Research Program of China(2012CB720500).

摘要: 软测量仪表是解决化工过程中质量变量难以实时测量的重要手段。软测量仪表的核心问题是软测量建模。阐述了软测量建模与辨识和非线性建模的关系:质量变量和易测变量的动态关系存在于增量之间,辨识模型依赖于增量数据,软测量建模则是依赖于实测变量数据来获取这个动态关系;非线性建模建立了变量间的静态关系,忽略了对象动态特性,而软测量建模要兼顾对动态特性的表征。随着人们对过程特性的认识加深,软测量建模方法不断发展,经历了从机理建模到数据驱动建模,从线性建模到非线性建模,从静态建模到动态建模的过程。详细讨论了软测量建模的发展过程,众多建模方法的优缺点及适用情况和现在建模的热点,最后对软测量建模方法进行了总体展望。

关键词: 软测量, 建模, 辨识, 非线性建模, 数据驱动建模, 非线性动态建模

Abstract: In the commercial chemical process,many primary product variables cannot be measured online,and soft sensor is an important means to solve this problem.Soft sensing modeling is the core issue of soft sensor.The relationship between soft sensing modeling and identification and nonlinear modeling is presented.The dynamic relationship between quality variables and variables that are easy to measure exists between the increments,and identification depends on incremental data,while soft sensing modeling depends on the measured data to get the relationship.Nonlinear modeling establishes the static relationship between these variables,ignoring the dynamic characteristics,which soft sensing modeling should take into account.With deeper understanding of the chemical process properties,the types and structures of soft sensing model have undergone a great change in the last decades,and soft sensing modeling method evolves from mechanism modeling to data-driven modeling,from linear modeling to nonlinear modeling,and from static modeling to dynamic modeling.The development of the soft sensing modeling method is reviewed.The advantages and disadvantages of the proposed methods are analyzed,and the applications of these methods are shown.In the end,the hot issues and the directions of development of soft sensing modeling method are presented.

Key words: soft sensor, modeling, identification, nonlinear modeling, data-driven modeling, nonlinear dynamic modeling

中图分类号: 

  • TP274
[1] Joseph B,Brosilow C.Inferential control of processes(Ⅰ):Steady state analysis and design[J].AIChE Journal,1978,24(3):485-492
[2] Brosilow C,Tong M.Inferential control of processes(Ⅱ):The structure and dynamics of inferential control systems[J].AIChE Journal,1978,24(3):492-500
[3] Joseph B,Brosilow C.Inferential control of processes(Ⅲ):Construction of optimal and suboptimal dynamic estimators[J].AIChE Journal,1978,24(2):500-509
[4] McAvoy T J.Computational intelligence and soft computing for space applications[J].IEEE Aerospace and Electronic Systems Magazine,1996,11(8):8-10
[5] Eykhoff P.System Identification—Parameter and State Estimation [M].New York:John Wiley & Sons,1974:10-12
[6] Strejc V.Least squares parameter estimation[J].Automatica,1980,16(5):535-550
[7] Sarkar P,Gupta S K.Steady state simulation of continuous-flow stirred-tank slurry propylene polymerization reactors[J].Polymer Engineering and Science,1992, 32(11):732-742
[8] Sarkar P,Gupta S K.Dynamic simulation of propylene polymerization in continuous flow stirred tank reactors[J].Polymer Engineering and Science,1993,33(6):368-374
[9] Sato C,Ohtani T,Nishitani H.Modeling,simulation and nonlinear control of a gas-phase polymerization process[J].Computers & Chemical Engineering,2000,24(2):945-951
[10] Adilson J A,Rubens M F.Soft sensors development for on-line bioreactor state estimation[J].Computers & Chemical Engineering,2000,24(7):1099-1103
[11] Kresta J V,Marlin T E,MacGregor J F.Development of inferential process models using PLS[J].Computers & Chemical Engineering,1994,18(7):597-611
[12] Bhavik R B.Multiscale PCA with application to multivariate statistical process monitoring[J].AIChE Journal,1998,44(7):1596-1610
[13] Mejdell T,Skogestad S.Composition estimator in a pilot-plant distillation column using multiple temperature[J].Industrial & Engineering Chemistry Research,1991,30(12):255-2564
[14] Zita I T,Mathieu S,Gerrit V S,et al.Assessment of near infrared and software sensor for biomass monitoring and control[J].Chemometrics and Intelligent Laboratory Systems,2008,94(2):166-174
[15] Jose C,Jesus P,Alberto F.Bilinear modeling of batch processes(Ⅰ):Theoretical discussion[J].Journal of Chemometrics,2008,22(5):299-308
[16] Jose C,Jesus P.Bilinear modeling of batch processes(Ⅱ):A comparison of PLS soft-sensors[J].Journal of Chemometrics,2008,22(10):533-547
[17] Rand E,Hector B,Christine M,et al.Fluorescence-based soft-sensor for monitoring beta-lactoglobulin and alpha-lactalbumin solubility during thermal aggregation[J].Biotechnology and Bioengineering,2008,99(3):567-577
[18] Rumana S,Uttandaraman S,Sirish S,et al.Inferential sensors for estimation of polymer quality parameters:industry application of a PLS-based soft sensor for a LDPE plant[J].Chemical Engineering Science,2006,61(19):6372-6384
[19] Bao L,Bodil R,Jorgen K H,et al.A systematic approach for soft sensor development[J].Computers & Chemical Engineering,2007,31(5):419-425
[20] Kourti T.Process analysis and abnormal situation detection:from theory to practice[J].IEEE Control Systems Magazine,2002,22(5):10-25
[21] Li W,Yue H H,Valle C S,et al.Recursive PCA for adaptive process monitoring[J].Journal of Process Control,2000,10(5):471-486
[22] Wang S,Cui J.Sensor-fault detection,diagnosis and estimation for centrifugal chiller systems using principal-component analysis method[J].Applied Energy,2005,82(3):197-213
[23] Qin S J.Recursive PLS algorithms for adaptive data modeling[J].Computers & Chemical Engineering,1998,22(4):503-514
[24] Dayal B S,MacGregor J F.Recursive exponentially weighted PLS and its applications to adaptive control and prediction[J].Journal of Process Control,1997,7(3):169-179
[25] Ruta D,Gabrys B.An overview of classifier fusion methods[J].Computing and Information Systems,2000,7(1):1-10
[26] Dong D,McAvoy T J.Nonlinear principal component analysis-based on principal curves and neural networks[J].Computers & Chemical Engineering,1996,20(1):65-78
[27] Bang Y H,Yoo C K,Lee I B.Nonlinear PLS modeling with fuzzy inference system[J].Chemometrics and Intelligent Laboratory Systems,2003,64(2):137-155
[28] Facco P,Doplicher F,Bezzo F,et al.Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process[J].Journal of Process Control,2009, 19(3):520-529
[29] Bro R.Multilinear PLS[J].Journal of Chemometrics,1996,10(1):47-61
[30] Shang L F,Lü J C,Yi Z.Rigid medical image registration using PCA neural network[J].Neurocomputing,2006,69(14):1717-1722
[31] Li W,Yue H H,Valle C S,et al.Recursive PCA for adaptive process monitoring[J].Journal of Process Control,2000,10(5):471-486
[32] Qin S J,McAvoy T J.Nonlinear PLS modeling using neural networks[J].Computers & Chemical Engineering,1992,16(4):379-391
[33] Principe J C,Euliano N R,Lefebvre W C.Neural and Adaptive Systems [M].New York:Wiley,2000:197-210
[34] Qin S J.Neural Networks for Intelligent Sensors and Control-Practical Issues and Some Solutions [M].New York:Academic Press,1996:213-234
[35] Theodoros E,Tomaso P,Massimiliano P.Regularization and statistical learning theory for data analysis[J].Computational Statistics and Data Analysis,2002,38(4):421-432
[36] Chen X,Gao F R,Chen G H.A soft-sensor development for melt-flow-length measurement during injection mold filling[J].Materials Science and Engineering A,2004,384(1):245-254
[37] Wang Xudong(王旭东),Shao Huihe(邵惠鹤),Luo Rongfu(罗荣富).The distributed RBF neural network and its application in soft sensor[J].Control Theory & Applications(控制理论与应用),1998,15(4):558-563
[38] Angelov P,Buswell R.Identification of evolving fuzzy rule-based models[J].IEEE Transactions on Fuzzy Systems,2002,10(5):667-677
[39] Arazo M J,Cano J M,Gmez S E,et al.Automatization of a penicillin production process with soft sensors and an adaptive controller based on neuro fuzzy systems[J].Control Engineering Practice,2004,12(9):1073-1090
[40] Wang Y H,Huang D X,Gao D J,et al.Wavelet networks based soft sensor and predictive control in fermentation process[J].Computer Aided Chemical Engineering,2003,15(6):1222-1227
[41] Jimenez A, Beltran G, Aguilera M P, et al. A sensor-software based on artificial neural network for the optimization of olive oil elaboration process[J].Sensors and Actuators:B. Chemical,2008, 129(2):985-990
[42] Liu Ruilan(刘瑞兰).Some studies on soft sensor technology and their applications to industry process.Hangzhou:Zhejiang University,2004
[43] Rong H J,Sundararajan N,Huang G B,et al.Sequential adaptive fuzzy inference system for nonlinear system identification and prediction[J].Fuzzy Sets and Systems,2006,157(9):1260-1275
[44] Liu Ruilan(刘瑞兰),Su Hongye(苏宏业),Mu Shengjing(牟盛静),et al.Fuzzy neural network model of 4-CBA concentration for industrial purified terephthalic acid oxidation process[J].Journal of Chemical Industry and Engineering(China)(化工学报),2004,12(2):234-239
[45] Runkler T A,Gerstorfer E,Schlang M,et al.Modeling and optimization of a refining process for fiber board production[J].Control Engineering Practice,2003,11(11):1229-1241
[46] Jang J S R,Sun C T,Mizutani E.Neuro-Fuzzy and Soft Computing [M].Upper Saddle River,NJ:Prentice Hall,1997:312-345
[47] Lin F J,Wai R J,Lin C H,et al.Decoupled stator-flux-oriented induction motor drive with fuzzy neural network uncertainty observer[J].IEEE Transactions on Industrial Electronics,2000,47(2):356-367
[48] Fukuda T,Kubota N.An intelligent robotic system based on a fuzzy approach[J].Proceedings of the IEEE,1999,87(9):1448-1470
[49] Li Xiuliang(李修亮).Study on soft sensor modeling methods and applications.Hangzhou:Zhejiang University,2009
[50] Vapnik V.Statistical Learning Theory [M].New York:Wiley,1998:34-56
[51] Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1999:128-194
[52] Suykens J A K,Vandewalle J.Least squares support vector machines classifiers[J].Neural Network Letters,1999,9(3):293-300
[53] Theodoros E,Tomaso P,Massimiliano P.Regularization and statistical learning theory for data analysis[J].Computational Statistics and Data Analysis,2002,38(4):421-432
[54] Huang C L,Wang C J.A GA-based feature selection and parameters optimization for support vector machines[J].Expert Systems with Applications,2006,31(2):231-240
[55] Cherkassky V,Ma Y.Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks,2004,17(1):113-126
[56] Yuan X F,Wang Y N.Parameter selection of support vector machine for function approximation based on chaos optimization[J].Journal of Systems Engineering and Electronics,2008,19(1):191-197
[57] Kadlec P,Gabrys B,Strandt S.Data-driven soft sensors in the process industry[J].Computers & Chemical Engineering,2009,33(4):795-814
[58] Ankti B G,Jyeshtharaj B J,Valadi K J,et al. Development of support vector regression-based correlation for prediction of overall gas hold-up in bubble column reactors for various gas-liquid systems[J].Chemical Engineering Science,2007,62(24):7078-7089
[59] Yuan P,Mao Z Z,Wang F L.Endpoint prediction of EAF based on multiple support vector machines[J].Journal of Iron and Steel Research,2007,14(2):20-24
[60] Lin F J,Wai R J,Lin C H,et al.Decoupled stator-flux-oriented induction motor drive with fuzzy neural network uncertainty observer[J].IEEE Transactions on Industrial Electronics,2000,47(2):356-367
[61] Yan W,Shao H,Wang X.Soft sensing modeling based on support vector machine and Bayesian model selection[J].Computers & Chemical Engineering,2004,28(8):1489-1498
[62] Fernando D S,Adriana N A.Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression[J].Computers & Chemical Engineering,2008,32(12):3264-3273
[63] Alexandra G,Jus K,Tor A J.Explicit stochastic predictive control of combustion plants based on Gaussian process models[J].Automatica,2008,44(6):1621-1631
[64] Kocijan J,Likar B.Gas-liquid separator modeling and simulation with Gaussian-process models[J].Simulation Modelling Practice and Theory,2008,16(8):910-922
[65] Rainer P.Multiple-step-ahead prediction in control systems with Gaussian process models and TS-fuzzy models[J].Engineering Applications of Artificial Intelligence,2007,20(8):1023-1035
[66] Bojan L,Jus K.Predictive control of a gas-liquid separation plant based on a Gaussian process model[J].Computers & Chemical Engineering,2007,31(3):142-152
[67] Li Xiuliang(李修亮),Su Hongye(苏宏业),Chu Jian(褚健).Multiple model soft sensor based on affinity propagation,Gaussian process and Bayesian committee machine[J].CIESC Journal(化工学报),2009,17(1):95-99
[68] Fu Yongfeng(傅永峰),Su Hongye(苏宏业),Zhang Ying(张英),et al.Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process[J].Journal of Chemical Industry and Engineering(China)(化工学报),2008,59(5):746-751
[69] Babak R.A cluster validity index for fuzzy clustering[J].Fuzzy Sets and Systems,2010,161(6):3014-3025
[70] Qi H Y,Zhou X G,Liu L H,et al.A hybrid neural network-first principles model for fixed-bed reactor[J].Chemical Engineering Science,1999,54(14):2512-2526
[71] Li Xiangyang(李向阳),Zhu Xuefeng(朱学峰),Liu Huanbin(刘焕彬).Research on hybrid modeling method in batch cooking process[J].Transactions of China Pulp and Paper(中国造纸学报),2001,16(2):24-28
[72] Prasad V,Schley M,Russo L P,et al.Product property and production rate control of styrene polymerization[J].Journal of Process Control,2002,12(3):353-372
[73] Zhong Wei(仲蔚),Yu Jinshou(俞金寿).MIMO soft sensors for hydrocracking fractionators via fuzzy artmap[J].Journal of Chemical Industry and Engineering(China)(化工学报),2000,51(5):671-675
[74] Kadlec P,Gabrys B,Strandt S.Data-driven soft sensors in the process industry[J].Computers & Chemical Engineering,2009,33(4):795-814
[75] Ma Yong(马勇),Huang Dexian(黄德先),Jin Yihui(金以慧).Discuss about dynamic soft-sensing modeling[J].Journal of Chemical Industry and Engineering(China)(化工学报),2005,56(8):1516-1519
[76] Dae S L,Min W L,Seung H W,et al.Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant[J].Process Biochemistry,2006,41(5):2050-2057
[77] Hui P,Tohru O,Yukihiro T,et al.RBF-ARX model-based nonlinear system modeling and predictive control with application to a NO<em>x decomposition process[J].Control Engineering Practice,2004,12(1):191-203
[78] David M H.Accounts of experiences in the application of artificial neural networks in chemical engineering[J].Industrial & Engineering Chemistry Research,2008,47(16):5782-5796
[79] Tian H P,David S H W,Jang S S.Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach[J].Industrial & Engineering Chemistry Research,2010,49(10):4738-4747
[80] Zhang D Y,Cao J,Sun L P.Soft sensor modeling of moisture content in drying process based on LSSVM// Cui J P,Qi J M.Proceedings of the 9th International Conference on Electronic Measurement & Instruments .Beijing,China:Institute of Electrical and Electronics,2009:989-993
[81] Suykens J A K,van G T,De M B.Least Squares Support Vector Machines [M].Singapore:World Scientific,2002:125-142
[82] Hector J G,Heb Q P,Wang J.A reduced order soft sensor approach and its application to a continuous digester[J].Journal of Process Control,2011,21(4):489-500
[83] Rangaiah G P,Krishnaswamy P R.Estimating second-order plus dead time model parameters[J].Industrial & Engineering Chemistry Research,1994,33(7):1867-1871
[84] Rangaiah G P,Krishnaswamy P R.Estimating second-order dead time parameters from under damped process transients[J].Chemical Engineering Science,1996,51(7):1149-1155
[85] Fujiwara K,Kano M,Hasebe S,et al.Soft-sensor development using correlation-based just-in-time modeling[J].AIChE Journal,2009,55(7):1754-1765
[86] Ku W,Storer R,Georgakis C.Disturbance detection and isolation by dynamic principal component analysis[J].Chemometrics and Intelligent Laboratory Systems,1995,30(1):179-196
[87] Russell E,Chiang L,Braatz R.Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis[J].Chemometrics and Intelligent Laboratory Systems,2000,51(8):81-93
[88] Larimore W.Statistical Methods in Control and Signal Processing [M].New York :Marcel Dekker,1997:234-256
[89] Wu Yao(吴瑶),Luo Xiongling(罗雄麟),Yuan Zhihong(袁志宏).Soft sensor modeling with dynamic interpolation neural network for multirate system[J].Chemical Industry and Engineering Progress(化工进展),2009,28(8):1323-1327
[90] Fu Y F.Dynamic soft-sensing modeling method and its application in industrial process[J].Process of Automation Instrumentation,2011,32(9):67-70
[91] Lin Y H,George A C.A new approach to fuzzy-neural system modeling[J].IEEE Transactions on Fuzzy System,1995,3(2):190-198
[92] Elman J L.Finding structure in time[J].Cognitive Science,1990,14(2):179-211
[93] Daniel O,Perez C J R,Eduardo A,et al.Soft-sensor for on-line estimation of ethanol concentrations in wine stills[J].Journal of Food Engineering,2008,87(4):571-577
[94] Shakil M,Elshafei M,Habib M A,et al.Soft sensor for NO<em>x and O2 using dynamic neural networks[J].Computers and Electrical Engineering,2009,35(4):578-586
[95] Dai X Z,Wang W C,Ding Y H,et al.Assumed inherent sensor inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process[J].Computers & Chemical Engineering, 2006,30(8):1203-1225
[96] Hong B S,Fan L T,John R S.Monitoring the process of curing of epoxy/graphite fiber composites with a recurrent neural network as a soft sensor[J].Artificial Intelligence,1998,11(2):293-306
[97] Li C,Wang S L,Zhang X M.Dynamic soft sensor modeling based on multiple least squares support vector machines//Max Q H M.Proceedings of the 7th World Congress on Intelligent Control and Automation. Piscataway,NJ:IEEE Press,2008:25-27
[98] Luo Jianxu(罗健旭),Shao Huihe(邵惠鹤).Developing dynamic soft sensors using multiple neural networks[J].Journal of Chemical Industry and Engineering(China)(化工学报),2003,54(12):1770-1773
[99] Li Chuan(李川),Wang Shilong(王时龙),Zhang Xianming(张贤明).Dynamic soft sensor modeling based on multiple relevance vector machines[J].Journal of System Simulation(系统仿真学报),2009,21(12):3513-3517
[100] Du W L,Guan Z Q,Qian F.The time series soft-sensor modeling based on Adaboost_LS-SVM// Max Q H M. Proceedings of the 8th World Congress on Intelligent Control and Automation.Piscataway,NJ:IEEE Press,2010:1491-1495
[101] Pedro J L,Alfredo D,Osvaldo A.High-level canonical piecewise linear representation using a simplicial partition[J].IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications,1999,46(4):463-480
[102] Elom D,Huang B,Xu F W,et al.A decoupled multiple model approach for soft sensors design[J].Control Engineering Practice,2011,19(2):126-134
[103] Li X L,Su H Y,Chu J.Multiple model soft sensor development with irregular/missing process output measurement[J].Control Engineering Practice,2009,17(1):95-99
[104] Hiromasa K,Kimito F.A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy[J].Chemometrics and Intelligent Laboratory Systems,2011,109(2):197-206
[105] Hiromasa K,Kimito F.Maintenance-free soft sensor models with time difference of process variables[J].Chemometrics and Intelligent Laboratory Systems,2011,107(2):312-317
[106] Bao L,Bodil R,Torben M S,et al.Data-driven soft sensor design with multiple-rate sampled data:a comparative study[J].Industrial & Engineering Chemistry Research,2009,48(5):5379-5387
[107] Jochen O,Mihiar A,Matthias K.Identification of a high efficiency boiler based on neural networks with locally distributed dynamics// Misener J.Proceedings of the 1996 IEEE International Symposium on Intelligent Control Dearborn.Piscataway,NJ:IEEE Press,1996:15-18
[108] Daniel S,Pedro A,Pablo E,et al.Adaptive soft-sensors for on-line particle size estimation in wet grinding circuits[J].Control Engineering Practice,2008,16(2):171-178
[109] Lu W X,Yang Q,Huang D X,et al.A dynamic soft-sensing method based on impulses response template and parameter estimation with modified DE optimization//George S A.Proceedings of the 17th International Federation of Automatic Control Congress.Laxenburg,Austria:IFAC Papers Online,2008:10983-10988
[110] Du Wenli(杜文莉),Guan Zhenqiang(官振强),Qian Feng(钱锋).Dynamic soft sensor modeling based on time series error compensation[J].CIESC Journal(化工学报),2010,61(2):439-443
[1] 邱禹, 刘乙奇, 吴菁, 黄道平. 基于深层神经网络的多输出自适应软测量建模[J]. 化工学报, 2018, 69(7): 3101-3113.
[2] 张雷, 张小刚, 陈华. 基于Gath-Geva算法和核极限学习机的多阶段间歇过程软测量[J]. 化工学报, 2018, 69(6): 2576-2585.
[3] 邵伟明, 田学民, 宋执环. 基于集成学习的多产品化工过程软测量建模方法[J]. 化工学报, 2018, 69(6): 2551-2559.
[4] 马建, 邓晓刚, 王磊. 基于深度集成支持向量机的工业过程软测量方法[J]. 化工学报, 2018, 69(3): 1121-1128.
[5] 王雅琳, 夏海兵, 袁小锋, 桂卫华. 基于趋势相似度分析的多重时滞辨识及其在加氢裂化流程中的应用[J]. 化工学报, 2018, 69(3): 1149-1157.
[6] 乔俊飞, 马士杰, 杨翠丽. 基于ROLS算法的递归RBF神经网络结构设计[J]. 化工学报, 2018, 69(3): 1191-1199.
[7] 罗锐涵, 陈娟, 王齐. 改进生物地理学算法对正丁烷异构反应模型的优化[J]. 化工学报, 2018, 69(3): 1158-1166.
[8] 朱群雄, 张晓晗, 顾祥柏, 徐圆, 贺彦林. 基于特征提取的函数连接神经网络研究及其化工过程建模应用[J]. 化工学报, 2018, 69(3): 907-912.
[9] 徐宝昌, 张华, 王学敏. 基于近似偏最小一乘准则的多变量非线性系统辨识方法[J]. 化工学报, 2018, 69(3): 1129-1135.
[10] 李泽龙, 杨春节, 刘文辉, 周恒, 李宇轩. 基于LSTM-RNN模型的铁水硅含量预测[J]. 化工学报, 2018, 69(3): 992-997.
[11] 朱湘临, 凌婧, 王博, 郝建华, 丁煜函. 基于改进PSO-RBFNN的海洋蛋白酶发酵过程软测量[J]. 化工学报, 2018, 69(3): 1221-1227.
[12] 范小强, 韩国栋, 黄正梁, 孙婧元, 王靖岱, 阳永荣, 吴文清, 谢磊. 气相法聚乙烯工艺冷凝态操作模式的稳定性和动态行为[J]. 化工学报, 2018, 69(2): 779-791.
[13] 郭晶晶, 徐金金, 杜文莉, 叶贞成. 自适应迭代混合建模及在碳二加氢过程的应用[J]. 化工学报, 2018, 69(11): 4814-4822.
[14] 辜小花, 张堃, 王甜, 候松, 宋鸿飞, 李太福, 邱奎. 基于CW-HCA联合指标的高含硫天然气净化过程故障监测[J]. 化工学报, 2018, 69(10): 4292-4301.
[15] 李亚宁, 王学雷, 谭杰, 刘承宝, 白熹微. 焦化换向过程烟气脱硝扰动建模与前馈控制[J]. 化工学报, 2017, 68(8): 3168-3176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!