化工学报 ›› 2020, Vol. 71 ›› Issue (2): 575-583.doi: 10.11949/j.issn.0438-1157.20190568

• 流体力学与传递现象 • 上一篇    下一篇

湿烟气工况下齿形螺旋翅片管束的性能研究

刘丹(),成毅,胡明月,盛倩云,周昊()   

  1. 浙江大学能源清洁利用国家重点实验室, 浙江, 杭州 310027
  • 收稿日期:2019-05-27 修回日期:2019-09-18 出版日期:2020-02-05 发布日期:2020-03-05
  • 通讯作者: 周昊 E-mail:liudanlan@163.com;zhouhao@zju.edu.cn
  • 作者简介:刘丹(1992—),女,博士研究生, liudanlan@163.com
  • 基金资助:
    国家杰出青年科学基金项目(51825605)

Study on performance of serrated spiral finned tube banks under wet flue gas condition

Dan LIU(),Yi CHENG,Mingyue HU,Qianyun SHENG,Hao ZHOU()   

  1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2019-05-27 Revised:2019-09-18 Online:2020-02-05 Published:2020-03-05
  • Contact: Hao ZHOU E-mail:liudanlan@163.com;zhouhao@zju.edu.cn

摘要:

换热器烟气侧自身结构参数和外界条件是影响换热器换热及阻力特性的主要因素,采用数值模拟和实验方法研究了翅片螺距及烟气含水量对齿形螺旋翅片管束换热及阻力特性的影响。结果表明,在翅片螺距3.63~8.47 mm范围内,烟气侧 Nu随着翅片螺距的增大而增大,在不同入口烟温下,相对于3.63 mm翅片管,5.08 mm和8.47 mm翅片管 Nu分别增大3%~6%和9%~14%, Eu随着翅片螺距的增大而减小,相对于3.63 mm翅片管,5.08 mm和8.47 mm翅片管 Eu分别减小30%和50%左右;烟气含水量的适当增大,有利于提高齿形翅片管束的换热及阻力特性。

关键词: 传热, 翅片螺距, 烟气含水量, 换热特性, 阻力特性, 数值模拟, 优化

Abstract:

The effect of fin arrangements and operating conditions has significance for the flue gas side performance characteristics of finned tube heat exchangers. The effects of fin pitches and water vapor content on the flow resistance and heat transfer characteristics of serrated spiral finned tube banks were investigated by using numerical simulation and experimental method. The results showed that the Nusselt number Nu increases with the increase of fin pitch when fin pitch ranges from 3.63 mm to 8.47 mm. Under different inlet flue gas temperatures, the Nu of 5.08 mm and 8.47 mm are higher than that for 3.63 mm by about 3%—6% and 9%—14%, respectively, while the Euler number Eu decreases with the increase of fin pitch, when fin pitch increases from 3.63 mm to 8.47 mm, Eu decreases by about 30% (for 5.08 mm) and 50% (for 8.47 mm). Appropriate increase of moisture content of flue gas is beneficial to improve heat transfer and resistance characteristics of toothed finned tube bundles.

Key words: heat transfer, fin pitch, water vapor content, heat transfer characteristics, flow resistance characteristics, numerical simulation, optimization

中图分类号: 

  • TK 124

图1

实验系统"

图2

齿形翅片管结构及管束排布"

表1

翅片管束几何参数"

No.do/mm di/mm hf/mm δf/mm pf/mm hs/mm ws/mm
1383215.918.4710.94
2383215.915.0810.94
3383215.913.6310.94

图3

建模示意图"

图4

边界条件设置"

图5

翅片螺距对齿形翅片管束烟气侧换热特性的影响"

图6

翅片螺距对齿形翅片管束烟气侧 Eu的影响 "

图7

模拟与实验结果比较"

图8

烟气含水量对不同螺距齿形翅片管束烟气侧 Nu的影响 "

图9

烟气含水量对烟气物性的影响(250℃)"

图10

烟气含水量对齿形翅片管束烟气侧 Eu的影响 "

1 Pongsoi P, Pikulkajorn S, Wongwises S. Heat transfer and flow characteristics of spiral fin-and-tube heat exchangers: a review[J]. International Journal of Heat and Mass Transfer, 2014, 79: 417- 431.
2 马有福, 袁益超, 刘聿拯, 等. 横向节距对锯齿螺旋翅片换热管特性影响的实验研究[J]. 中国电机工程学报, 2011, 31( 8): 67- 72.
Ma Y F, Yuan Y C, Liu Y Z, et al. Experimental studies on the effects of transverse pitch on heat transfer and flow resistance characteristics of serrated spiral finned tube banks[J]. Proceedings of the CSEE, 2001, 31( 8): 67- 72.
3 陆炳生, 叶文彪, 刘复田. 螺旋翅片管省煤器的应用[J]. 华东电力, 2004, 32( 11): 55- 57.
Lu B S, Ye W B, Liu F T. Application of spiral finned tube economizer[J]. East China Electric Power, 2004, 32( 11): 55- 57.
4 Lemouedda A, Schmid A, Franz E, et al. Numerical investigations for the optimization of serrated finned-tube heat exchangers[J]. Applied Thermal Engineering, 2011, 31( 8): 1393- 1401.
5 Wongwises S, Chokeman Y. Effect of fin pitch and number of tube rows on the air side performance of herringbone wavy fin and tube heat exchangers[J]. Energy Conversion and Management, 2005, 46( 13/14): 2216- 2231.
6 Mon M S, Gross U. Numerical study of fin-spacing effects in annular-finned tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2004, 47( 8/9): 1953- 1964.
7 Pongsoi P, Promoppatum P, Pikulkajorn S, et al. Effect of fin pitches on the air-side performance of L-footed spiral fin-and-tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2013, 59: 75- 82.
8 Pongsoi P, Pikulkajorn S, Wongwises S. Effect of fin pitches on the optimum heat transfer performance of crimped spiral fin-and-tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2012, 55: 6555- 6566.
9 何法江, 曹伟武, 匡江红, 等. 螺旋翅片管束传热和阻力特性的试验研究[J]. 动力工程学报, 2009, 29( 5): 460- 464.
He F J, Cao W W, Kuang J H, et al. Heat transfer and resistance characteristics of spiral finned tube bundles[J]. Journal of Power Engineering, 2009, 29( 5): 460- 464.
10 王耀昕. 螺旋翅片管式余热锅炉烟气阻力计算方法比较[J]. 节能技术, 2016, 34( 4): 310- 313.
Wang Y X. Comparison of calculation method of flue gas resistance of spiral finned tube in the heat recovery steam generator[J]. Energy Conservation Technology, 2016, 34( 4): 310- 313.
11 马有福, 袁益超, 王治云. 锯齿螺旋翅片管束传热与阻力特性的研究进展[J]. 动力工程学报, 2010, 30( 11): 849- 854.
Ma Y F, Yuan Y C, Wang Z Y. Developing progress on heat transfer and resistance characteristics of the serrated helically finned tube banks[J]. Journal of Chinese Society of Power Engineering, 2010, 30( 11): 849- 854.
12 Hofmann R, Frasz F, Ponweiser K. Experimental analysis of enhanced heat transfer and pressure-drop of serrated finned-tube bundles with different fin geometries[C]//Krope J, Sohrab S H, Benra I F K. Proceedings of the 5th WSEAS International Conference on Heat and Mass Transfer. Acapulco, Mexico: Mathematics and Computers in Science and Engineering, 2008: 54- 62.
13 裴育烽, 马南稻, 刘宏伟. 锯齿螺旋翅片管束换热和阻力特性关联式的比较[J]. 热能动力工程, 2014, 29( 6): 651- 656.
Pei Y F, Ma N D, Liu H W. Comparison of the correlation formulae for calculating the heat exchange and resistance characteristics of serrated spirally-finned tube bundles[J]. Journal of Engineering for Thermal Energy and Power, 2014, 29( 6): 651- 656.
14 Kawaguchi K, Okui K, Kashi T. Heat transfer and pressure drop characteristics of finned tube banks in forced ,convection (comparison of heat transfer and pressure drop characteristics of serrated and spiral fins) [J]. Journal of Enhanced Heat Transfer, 2005, 12( 1): 1- 20.
15 马有福. 齿形螺旋翅片管束强化换热特性研究[D]. 上海: 上海理工大学, 2012.
Ma Y F. Investigation on the heat transfer enhancement of serrated fin tube banks[D]. Shanghai: University of Shanghai for Science and Technology, 2012.
16 曹雅文, 袁益超, 徐昱. 管间距对折齿型螺旋翅片管束性能影响的数值模拟及试验研究[J]. 工业锅炉, 2013, ( 4): 1- 5.
Cao Y W, Yuan Y C, Xu Y. Numerical simulation and experimental study on the effects of tube pitch on heat transfer and resistance characteristics of twisted-segmented-finned tube banks[J]. Industrial Boiler, 2013, ( 4): 1- 5.
17 Næss E. Experimental investigation of heat transfer and pressure drop in serrated-fin tube bundles with staggered tube layouts[J]. Applied Thermal Engineering, 2010, 30( 13): 1531- 1537.
18 郭亮, 柯道友. 中等雷诺数下高水分烟气横流圆管对流换热实验研究[J]. 工程热物理学报, 2001, 22: 93- 96.
Guo L, Ke D Y. Experimental study of high moisture content gas crossflow over a cylinder at moderate Reynolds numbers[J]. Journal of Engineering Thermophysics, 2001, 22: 93- 96.
19 Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1( 1): 3- 17.
20 Weierman C. Correlations ease the selection of fin tubes[J]. Oil and Gas Journal, 1976, 74( 6): 94- 100.
21 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 115- 126.
Wang F J. Computational Fluid Dynamics Analysis: Principles and Applications of CFD Software [M]. Beijing: Tsinghua University Press, 2004: 115- 126.
22 许圣华. 烟气物性的直接计算方法[J]. 苏州丝绸工学院学报, 1999, 19( 3): 32- 36.
Xu S H. Direct calculation of flue gas properties[J]. Journal of Suzhou Institute of Silk Textile Technology, 1999, 19( 3): 32- 36.
23 杨世铭, 陶文铨. 传热学 [M]. 4版 . 北京: 高等教育出版社, 2006: 260.
Yang S M, Tao W Q. Heat Transfer [M]. 4th ed. Beijing: Higher Education Press, 2006: 260.
24 Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16( 2): 359- 368.
25 Zukauskas A A. 换热器内的对流传热[M]. 马昌文, 居滋象, 肖宏才, 译. 北京: 科学出版社, 1986: 337- 370.
Zukauskas A A. Convective Heat Transfer in Heat Exchangers[M]. Ma C W, Ju Z X, Xiao H C, trans. Beijing: Science Press, 1986: 337- 370.
26 Lee M, Kang T, Kim Y. Air-side heat transfer characteristics of spiral-type circular fin-tube heat exchangers[J]. International Journal of Refrigeration, 2010, 33( 2): 313- 320.
27 卓宁, 孙家庆. 工程对流换热[M]. 北京: 机械工业出版社, 1982: 90.
Zhuo N, Sun J Q. Engineering Convection Heat Transfer[M]. Beijing: China Machine Press, 1982: 90.
28 冯俊凯, 沈幼庭. 锅炉原理及计算[M]. 2版 . 北京: 科学出版社, 1998: 575- 584.
Feng J K, Shen Y T. Principle and Calculation of Boiler [M]. 2nd ed. Beijing: Science Press, 1998: 575- 584.
29 黄祖毅. 废弃物锅炉错列管束的流动阻力特性[J]. 锅炉技术, 2003, 34( 1): 72- 75.
Huang Z Y. Characteristics of fluid resistance of the crossing staggered tube bundles of the MSW boiler[J]. Boiler Technology, 2003, 34( 1): 72- 75.
[1] 刘稳文, 吕梦芸, 李学艺, 黄璟, 池立勋, 闫锋, 张劲军. 含蜡油凝点判断准则的力学涵义[J]. 化工学报, 2020, 71(2): 566-574.
[2] 邢瑞, 江南, 刘冰, 安亚雄, 汪亚燕, 张东辉. 基于MPC控制技术优化VPSA制氧工艺的模拟[J]. 化工学报, 2020, 71(2): 669-679.
[3] 胡贵华, 叶贞成, 杜文莉. 助燃空气对乙烯裂解炉NOx排放的影响[J]. 化工学报, 2020, 71(2): 698-707.
[4] 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601.
[5] 周海军, 熊源泉. 补充风对水平管高压密相气力输送影响的模拟研究[J]. 化工学报, 2020, 71(2): 602-613.
[6] 王修纲, 吴裕凡, 郭潞阳, 路庆华, 叶晓峰, 曹育才. 聚合釜传热性能的实验研究及数值模拟[J]. 化工学报, 2020, 71(2): 584-593.
[7] 罗潇, 郭航, 叶芳, 马重芳. 基于真空镀膜技术的薄膜热传感器实验[J]. 化工学报, 2019, 70(S2): 123-129.
[8] 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137.
[9] 唐凌虹, 杜雪平, 曾敏. 进风角度对椭圆管翅式换热器传热性能影响[J]. 化工学报, 2019, 70(S2): 138-145.
[10] 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
[11] 王宁, 张晨宇, 徐洪涛, 张剑飞. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200.
[12] 贾文华, 田茂诚, 张冠敏, 魏民. 含不凝气体蒸汽波节管内凝结特性研究[J]. 化工学报, 2019, 70(S2): 201-207.
[13] 尹应德, 朱冬生, 刘世杰, 叶周, 王飞扬. 双缸滚动转子式压缩机采暖热泵低温制热性能[J]. 化工学报, 2019, 70(S2): 220-227.
[14] 徐阳, 郑章靖, 李明佳. 管壳式相变储热器性能快速预测研究[J]. 化工学报, 2019, 70(S2): 237-243.
[15] 蒋二辉, 张东伟, 周俊杰, 沈超, 魏新利. 不同结构下两弯头脉动热管的数值模拟[J]. 化工学报, 2019, 70(S2): 244-249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 钱新明, 刘牧, 刘振翼. 隧道内液化天然气管道泄漏火灾温度场的数值模拟 [J]. 化工学报, 2009, 60(12): 3184 -3188 .
[2] 王晓莲, 王淑莹, 彭永臻. 进水C/P比对A2/O工艺性能的影响 [J]. 化工学报, 2005, 56(9): 1765 -1770 .
[3] 邓先和,邓颂九. 管间支撑物的结构对横纹槽管管束传热强化性能的影响 [J]. CIESC Journal, 1992, 43(1): 62 -68 .
[4] 罗雄麟, 白玉杰, 侯本权, 孙琳. 基于相对增益分析的换热网络旁路设计 [J]. 化工学报, 2011, 62(5): 1318 -1325 .
[5] 唐志杰, 唐朝晖, 朱红求. 一种基于多模型融合软测量建模方法 [J]. 化工学报, 2011, 62(8): 2248 -2252 .
[6] 张建文, 李亚超, 陈建峰. 旋转床内微观混合与反应过程的特性[J]. 化工学报, 2011, 62(10): 2726 -2732 .
[7] 杨基础,董燊,杨小民. 海藻糖对固定化酶的保护作用 [J]. CIESC Journal, 2000, 51(2): 193 -197 .
[8] 梁运涛, 曾文. 封闭空间瓦斯爆炸与抑制机理的反应动力学模拟 [J]. 化工学报, 2009, 60(7): 1700 -1706 .
[9] 魏清渤,高楼军,付 峰,张玉琦,马荣萱. pH响应PAAm-g-PEG/PVP半互穿网络水凝胶的制备以及溶胀动力学[J]. 化工进展, 2012, 31(01 ): 163 -168 .
[10] 赵亚红,薛振华,王喜明,王丽. 羧甲基纤维素/蒙脱土纳米复合材料对刚果红染料的吸附及解吸性能[J]. 化工学报, 2012, 63(8): 2655 -2660 .