化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 69-78.doi: 10.11949/j.issn.0438-1157.20190033

• 流体力学与传递现象 • 上一篇    下一篇

基于扁管的蒸发式冷凝器管外传热传质特性研究

单思宇(),谭宏博()   

  1. 西安交通大学制冷与低温工程系,陕西 西安 710049
  • 收稿日期:2019-01-09 修回日期:2019-01-18 出版日期:2019-03-31 发布日期:2019-04-26
  • 通讯作者: 谭宏博 E-mail:shansy@stu.xjtu.edu.cn;hongbotan@xjtu.edu.cn
  • 作者简介:<named-content content-type="corresp-name">单思宇</named-content>(1995—),女,硕士研究生,<email>shansy@stu.xjtu.edu.cn</email>|谭宏博(1982—),男,博士,副教授,<email>hongbotan@xjtu.edu.cn</email>
  • 基金资助:
    国家重点研发计划项目(2018YFB0904400)

Study on heat and mass transfer characteristics outside flat tube for evaporative condensers

Siyu SHAN(),Hongbo TAN()   

  1. Department of Refrigeration and Cryogenic Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2019-01-09 Revised:2019-01-18 Online:2019-03-31 Published:2019-04-26
  • Contact: Hongbo TAN E-mail:shansy@stu.xjtu.edu.cn;hongbotan@xjtu.edu.cn

摘要:

强化蒸发式冷凝器管外传热传质可有效降低系统能耗,利用Fluent软件,结合自编译程序及组分输运模型对扁管蒸发式冷凝器管外传热传质过程建模,选取了等周长圆管模型进行比较,研究了二者传热传质性能的差异。通过研究管外液膜厚度及速度,以及管外温度分布和含湿量的变化规律,对比了扁管和圆管的平均表面传热系数,结果表明扁管的平均表面传热系数于圆管提升了9.04%。模拟了风速从1.5 m·s-1变化至3 m·s-1以及喷淋密度从0.15 kg·m-1·s-1增加至0.3 kg·m-1·s-1时对扁管式蒸发式冷凝器换热的影响,得到随着风速及喷淋密度的增加其平均表面传热系数分别增加了5.68%和30.26%。对扁管式蒸发式冷凝器管外的传热传质特性的研究为其应用提供了理论指导。

关键词: 蒸发式冷凝器, 扁管, 蒸发, 传热, 传质

Abstract:

Enhancement of the heat and mass transfer outside the tube of evaporative condensers can effectively reduce the energy consumption in a refrigeration system. The improving characteristics of heat and mass transfer outside a flat tube for evaporative condensers were investigated. Numerical simulation of the heat and mass transfer on the flat tube was carried out in Fluent using user define functions and component transport models. The heat transfer performance of a circular tube with the same perimeter was compared with that of the flat tube. The thickness and velocity of the liquid film outside the tube, the temperature distribution and the variation of moisture content outside the tube are studied, and the average heat transfer coefficients of the flat tube and the circular tube are compared. The results show that the average heat transfer coefficient of the flat tube is 9.04% higher than that of the circular tube. In addition, the influence of wind speed and spray density on the heat transfer of flat tube evaporative condenser is calculated. The wind speed varies from 1.5 m·s-1 to 3 m·s-1 and the spray density varies from 0.15 kg·m-1·s-1 to 0.3 kg·m-1·s-1. The results show that the average heat transfer coefficient increases by 5.68% and 30.26% respectively. Investigating the heat and mass transfer characteristics outside a flat tube for evaporative condensers provides theoretical guidance for the application of the flat tube in evaporative condensers.

Key words: evaporative condensers, flat tube, evaporation, heat transfer, mass transfer

中图分类号: 

  • TK 172

图1

扁管模型尺寸"

图2

物理模型"

图3

扁管结构示意图"

表1

模拟的基本工况"

设置参数 数值
喷淋水入口喷淋密度/(kg·m-1·s-1) 0.15~0.30
喷淋水入口温度/K 303.15
壁面温度/K 308.15
空气入口流速/(m·s-1) 3
空气入口温度/K 298.15
空气入口含湿量/(kg·(kg干空气)-1) 0.015
喷淋高度/ mm 5
喷淋水入口宽度 /mm 1

图4

模拟值与实验关联式预测值比较"

图5

气液相分布云图"

图6

圆管与扁管不同位置速度矢量分布比较"

图7

圆管与扁管液膜速度比较"

图8

圆管与扁管不同周向无量纲位置的液膜厚度比较"

图9

圆管与扁管不同周向无量纲位置的局部传热系数比较"

图10

温度分布云图"

图11

不同周向无量纲位置的温度沿水平方向变化曲线"

图12

含湿量分布云图"

图13

不同周向无量纲位置的含湿量沿水平方向变化曲线"

图14

不同风速下周向90°位置处温度沿水平方向变化曲线"

图15

不同风速下周向90°位置处含湿量沿水平方向变化曲线"

图16

不同风速下水膜平均表面传热系数变化曲线"

图17

不同喷淋密度下液膜厚度沿周向变化曲线"

图18

不同喷淋密度下周向90°位置处温度沿水平方向变化曲线"

图19

不同喷淋密度下周向90°位置处含湿量沿水平方向变化曲线"

图20

不同喷淋密度下液膜平均速度"

图21

不同喷淋密度下液膜平均表面传热系数变化曲线"

1 尹正, 张文玲 . 我国冷却设备行业发展现状及展望[J]. 制冷技术, 2015, 8: 86-88.
Yin Z , Zhang W L . Development status and outlook for China cooling equipment industry in 2014[J]. Refrigeration Technology, 2015, 8: 86-88.
2 朱东生, 孙荷静, 蒋翔 . 蒸发式冷凝器的研究现状及其应用[J]. 流体机械, 2008, 36(8): 28-34.
Zhu D S , Sun H J , Jiang X . Research progress and application of evaporative condenser[J]. Fluid Machinery, 2008, 36(8): 28-34.
3 Fiorentino M , Starace G . Numerical investigations on two-phase flow modes in evaporative condensers[J]. Applied Thermal Engineering, 2016, 94: 777-785.
4 Dreyer A A , Erens P J . Heat and mass transfer coefficient and pressure drop correlations for a crossflow evaporative cooler[C]//Proceeding of the International Heat Transfer Conference. Jerusalem, 1990.
5 Mizushina T , Ito R , Miyashita H . Experimental study of an evaporative cooler[J]. International Chemical Engineering, 1967, 7(4): 727-732.
6 Jahangeer K A , Tay A A O , Islam M R . Numerical investigation of transfer coefficients of an evaporatively-cooled condenser[J]. Applied Thermal Engineering, 2011: 1655-1663.
7 Islam M R , Jahangeer K A , Chua K J . Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems[J]. Energy, 2015, (87): 390-399.
8 Acunha J I C , Schneider P S . Numerical simulation of air-water flows in an evaporative condenser[J]. Thermal Engineering, 2009, 8(1): 24-30.
9 朱冬生, 张景卫, 吴治将, 等 . 板式蒸发式冷凝器两相降膜流动CFD模拟及传热研究[J]. 华南理工大学学报(自然科学版), 2008, 36(7): 6-10.
Zhu D S , Zhang J W , Wu Z J , et al . CFD simulation and investigation into heat transfer for falling film with two-phase flow in plate-type evaporative condenser[J]. Journal of South China University of Technology (Natural Science Edition), 2008, 36(7): 6-10.
10 王定标, 万方方, 周俊杰 . 蒸发式冷凝器异型扁管性能分析及数值模拟[J]. 郑州大学学报 (工学版), 2010, 31(2): 64-67.
Wang D B , Wan F F , Zhou J J . Performance analysis and numerical simulation of evaporative condenser with special-shaped flat tube[J]. Journal of Zhengzhou University(Engineering Science), 2010, 31(2): 64-67.
11 Tsay Y L , Lin T F . Evaporation of a heated falling liquid film into a laminar gas stream[J]. Experimental Thermal and Fluid Science, 1995, 11(7): 61-71.
12 罗林聪 . 水平异形管降膜蒸发流动与传热强化机理及实验研究[D]. 济南: 山东大学, 2014.
Luo L C . Analysis of flow and heat transfer enhancement and experimental research on falling film evaporation on horizontal shaped tubes[D]. Jinan: Shandong University, 2014.
13 Fiorentino M , Starace G . A numerical model to investigate evaporative condensers behaviour at tube scale[C]// ASME 2014-12th Biennial Conference on Engineering Systems and Analysis. American Society of Mechanical Engineering, 2014.
14 程嫚 . 水平管外水风传热传质数值模拟[D]. 武汉: 华中科技大学, 2014.
Cheng M . Numerical simulation of heat and mass transfer of water and air outside the horizontal tube[D]. Wuhan: Huazhong University of Science and Technology, 2014.
15 Parker R O , Treybal R E . The heat mass transfer characteristics of evaporative coolers [J]. AIChE Chemical Engineering Progress Symposium Series, 1962, 57(32): 138-149.
[1] 张光华, 董秋辰, 刘晶. 多苯环双子季铵盐在油水两相中的传质性能[J]. 化工学报, 2019, 70(S1): 61-68.
[2] 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34.
[3] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[4] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[5] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[6] 颜建国, 朱凤岭, 郭鹏程, 罗兴锜. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787.
[7] 杨俊兰, 宁淑英. 紧凑通道内CO2/润滑油混合物沸腾换热特性研究[J]. 化工学报, 2019, 70(5): 1772-1778.
[8] 陈曦, 林毅, 邵帅. 倾角及加热功率对乙烷脉动热管传热性能的影响[J]. 化工学报, 2019, 70(4): 1383-1389.
[9] 贾勇, 蒋进, 赵忍, 荣卫龙, 殷李国, 顾明言, 龙红明. 氨法烟气脱硫SO2吸收传质系数研究[J]. 化工学报, 2019, 70(4): 1367-1374.
[10] 柴叶霞, 陈华艳, 贾悦, 李丹丹, 武春瑞, 吕晓龙. PVDF中空纤维换热管超疏水表面强化蒸气滴状冷凝传热[J]. 化工学报, 2019, 70(4): 1331-1339.
[11] 朱兵国, 吴新明, 张良, 孙恩慧, 张海松, 徐进良. 垂直上升管内超临界CO2 流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290.
[12] 朱明汉, 白鹏飞, 胡艳鑫, 黄金. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357.
[13] 施素丽, 鹿院卫, 于强, 吴玉庭. 熔盐单罐释热过程换热器取热方式优选[J]. 化工学报, 2019, 70(3): 857-864.
[14] 常景彩, 王翔, 王鹏, 崔琳, 李军, 张鑫, 马春元. 静电场中极板表面液膜蒸发特性研究[J]. 化工学报, 2019, 70(3): 865-873.
[15] 刘小诗, 邹得球, 贺瑞军, 马先锋. 氧化石墨烯/石蜡复合相变乳液的制备及对流传热特性[J]. 化工学报, 2019, 70(3): 1188-1197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .