化工学报 ›› 2019, Vol. 70 ›› Issue (6): 2153-2163.doi: 10.11949/j.issn.0438-1157.20181523

• 流体力学与传递现象 • 上一篇    下一篇

喷雾干燥颗粒表面形貌形成过程粗粒化模拟

尚良超(),陈晓东,肖杰()   

  1. 苏州大学材料与化学化工学部,化工与环境工程学院,中澳乳品未来技术联合研究中心,江苏 苏州 215123
  • 收稿日期:2018-12-27 修回日期:2019-03-12 出版日期:2019-06-05 发布日期:2019-06-05
  • 通讯作者: 肖杰 E-mail:lcshang@stu.suda.edu.cn;jie.xiao@suda.edu.cn
  • 作者简介:<named-content content-type="corresp-name">尚良超</named-content>(1994—),男,硕士研究生,<email>lcshang@stu.suda.edu.cn</email>
  • 基金资助:
    江苏省自然科学基金优秀青年基金项目(BK20170062);国家重点研发计划项目(2016YFE0101200);国家自然科学基金青年项目(21406148)

Coarse-grained simulation of surface morphology formation for spray dried particles

Liangchao SHANG(),Xiao Dong CHEN,Jie XIAO()   

  1. China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
  • Received:2018-12-27 Revised:2019-03-12 Online:2019-06-05 Published:2019-06-05
  • Contact: Jie XIAO E-mail:lcshang@stu.suda.edu.cn;jie.xiao@suda.edu.cn

摘要:

喷雾干燥制粒有着广泛的应用。颗粒表面形貌的调控对提升颗粒品质起到至关重要的作用。本研究旨在建立分子尺度粗粒化模型,描述蒸发诱导下溶质的自组装行为,预测不同干燥条件下表面形貌的演变过程。文中建立的粗粒化网格Monte Carlo模型可以处理球形固体溶质,并充分考虑各物质之间相互作用及相变过程。开发的分析方法可以定量蒸发过程中液体残留率、颗粒分布与组装形貌。通过初步的二维系统模拟可以发现,溶剂不断蒸发过程中溶质逐渐移动,形成各种自组装结构。溶剂化学势越小,液体残留率越低。随着初始溶质浓度升高,最终溶质组装形貌从点状变为网状结构。不同的物质间相互作用也会导致紧密或松散的溶质分布。

关键词: Monte Carlo模拟, 粉体, 喷雾干燥, 表面形貌, 蒸发, 自组装

Abstract:

Spray drying for powder production has a wide range of applications. On-aim control of surface morphology of spray dried particles is critical for achieving improved powder quality. This work aims at a molecular scale coarse-grained model that can characterize evaporation induced self-assembly of solute during the drying process. Thus, surface morphology evolution under different drying conditions can be predicted. The lattice Monte Carlo model developed in this work can take care of spherical shaped solute molecules and comprehensive interactions between species in the system. The analysis method is capable of quantifying solvent residue and solute distribution as well as its assembly structure. The simulations carried out in 2D show that different assembly structures can be formed under investigated conditions. The decrease of solvent chemical potential energy leads to the decreased solvent residual ratio. With the increase of initial solute concentration, the final assembly pattern changes from disk-shape to net-shape. Furthermore, assembly patterns can be tailored through manipulating interactions between species in the system.

Key words: Monte Carlo simulation, powders, spray drying, surface morphology, evaporation, self-assembly

中图分类号: 

  • TQ 02

图1

粗粒化Monte Carlo模型"

表1

不同干燥条件下的模型参数"

Case D C μ 1 /k B T ε 2,1 /k B T ε 2,2 /k B T
base case 19 40% ?4.2 3 3.5
1 9 40% ?4.2 3 3.5
2 29 40% ?4.2 3 3.5
3 39 40% ?4.2 3 3.5
4 19 10% ?4.2 3 3.5
5 19 20% ?4.2 3 3.5
6 19 30% ?4.2 3 3.5
7 19 40% ?4.1 3 3.5
8 19 40% ?4.3 3 3.5
9 19 40% ?4.4 3 3.5
10 19 40% ?4.2 1 3.5
11 19 40% ?4.2 2 3.5
12 19 40% ?4.2 4 3.5
13 19 40% ?4.2 3 2.5
14 19 40% ?4.2 3 3
15 19 40% ?4.2 3 4

图2

表面形貌随蒸发过程的演变"

图3

液体蒸发与固体聚集状态随时间的演变"

图4

固体大小对表面形貌的影响"

图5

固体大小对蒸发、固体聚集的影响"

图6

固体浓度对表面形貌的影响"

图7

固体浓度对蒸发、固体聚集的影响"

图8

液体化学势对表面形貌的影响"

图9

液体化学势对蒸发、固体聚集的影响"

图10

固-液相互作用对表面形貌的影响"

图11

固-液相互作用对蒸发、固体聚集的影响"

图12

固-固相互作用对表面形貌的影响"

图13

固-固相互作用对蒸发、固体聚集的影响"

1 Maria I R . Microencapsulation by spray drying[J]. Drying Technology, 1998, 16(6): 1195-1236.
2 Kim E H J , Chen X D , Pearce D . Surface composition of industrial spray-dried milk powders(Ⅱ): Effects of spray drying conditions on the surface composition[J]. Journal of Food Engineering, 2009, 94(2): 169-181.
3 Liu W , Wu W D , Selomulya C , et al . Facile spray-drying assembly of uniform microencapsulates with tunable core-shell structures and release properties[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2011, 27(21): 12910-12915.
4 Waldron K , Wu W D , Wu Z , et al . Formation of monodisperse mesoporous silica microparticles via spray-drying[J]. Journal of Colloid and Interface Science, 2014, 418: 225-233.
5 Vehring R . Pharmaceutical particle engineering via spray drying[J]. Pharmaceutical Research, 2008, 25(5): 999-1022.
6 Vehring R , Foss W R , Lechuga-Ballesteros D . Particle formation in spray drying[J]. Journal of Aerosol Science, 2007, 38(7): 728-746.
7 Walton D E , Mumford C J . Spray dried products—characterization of particle morphology[J]. Chemical Engineering Research and Design, 1999, 77(1): 21-38.
8 Handscomb C S , Kraft M . Simulating the structural evolution of droplets following shell formation[J]. Chemical Engineering Science, 2010, 65(2): 713-725.
9 Nandiyanto A B D , Okuyama K . Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges[J]. Advanced Powder Technology, 2011, 22(1): 1-19.
10 Chen X D , Sidhu H , Nelson M . On the addition of protein (casein) to aqueous lactose as a drying aid in spray drying—theoretical surface composition[J]. Drying Technology, 2013, 31(13/14): 1504-1512.
11 Balgis R , Ernawati L , Ogi T , et al . Controlled surface topography of nanostructured particles prepared by spray-drying process[J]. AIChE Journal, 2017, 63(5): 1503-1511.
12 Nuzzo M , Sloth J , Brandner B , et al . Confocal Raman microscopy for mapping phase segregation in individually dried particles composed of lactose and macromolecules[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481: 229-236.
13 Chen X D , Sidhu H , Nelson M . Theoretical probing of the phenomenon of the formation of the outermost surface layer of a multi-component particle, and the surface chemical composition after the rapid removal of water in spray drying[J]. Chemical Engineering Science, 2011, 66(24): 6375-6384.
14 Zellmer S , Garnweitner G , Breinlinger T , et al . Hierarchical structure formation of nanoparticulate spray-dried composite aggregates[J]. ACS Nano, 2015, 9(11): 10749-10757.
15 Xiao J , Chen X D . Multiscale modeling for surface composition of spray-dried two-component powders[J]. AIChE Journal, 2014, 60(7): 2416-2427.
16 Patel K C , Chen X D . Prediction of spray-dried product quality using two simple drying kinetics models[J]. Journal of Food Process Engineering, 2005, 28(6): 567-594.
17 Jubaer H , Afshar S , Xiao J , et al . On the importance of droplet shrinkage in CFD-modeling of spray drying[J]. Drying Technology, 2017, 36(15): 1-17.
18 Adhikari B , Howes T , Bhandari B R .Use of solute fixed coordinate system and method of lines for prediction of drying kinetics and surface stickiness of single droplet during convective drying[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(5): 405-419.
19 Mezhericher M , Levy A , Borde I . Theoretical models of single droplet drying kinetics: a review[J]. Drying Technology, 2010, 28(2): 278-293.
20 Porowska A , Dosta M , Fries L , et al . Predicting the surface composition of a spray-dried particle by modelling component reorganization in a drying droplet[J]. Chemical Engineering Research and Design, 2016, 110: 131-140.
21 Handscomb C S , Kraft M , Bayly A E . A new model for the drying of droplets containing suspended solids[J]. Chemical Engineering Science, 2009, 64(4): 628-637.
22 Seydel P , Blömer J , Bertling J . Modeling particle formation at spray drying using population balances[J]. Drying Technology, 2006, 24(2): 137-146.
23 Wang S , Langrish T A G . A distributed parameter model for particles in the spray drying process[J]. Advanced Powder Technology, 2009, 20(3): 220-226.
24 Xiao J , Zhang H , Wu W D , et al . An improved calculation procedure on surface composition of spray-dried protein-sugar two-component systems[J]. Drying Technology, 2015, 33(7): 817-821.
25 Voronov R S , Papavassiliou D V , Lee L L . Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length[J]. The Journal of Chemical Physics, 2006, 124(20): 204701.
26 Koishi T , Yasuoka K , Fujikawa S , et al . Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(21): 8435-8440.
27 Hong S D , Ha M Y , Balachandar S . Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation[J]. Journal of Colloid and Interface Science, 2009, 339(1): 187-195.
28 Rabani E , Reichman D R , Geissler P L , et al . Drying-mediated self-assembly of nanoparticles[J]. Nature, 2003, 426(6964): 271-274.
29 Ge G , Brus L . Evidence for spinodal phase separation in two-dimensional nanocrystal self-assembly[J]. Journal of Physical Chemistry B, 2000, 104(41): 9573-9575.
30 Tang J , Ge G , Brus L E . Gas-liquid-solid phase transition model for two-dimensional nanocrystal self-assembly on graphite[J]. Journal of Physical Chemistry B, 2002, 106(22): 5653-5658.
31 Sztrum C G , Rabani E . Out-of-equilibrium self-assembly of binary mixtures of nanoparticles[J]. Advanced Materials, 2006, 18(5): 565-571.
32 Sztrum C G , Hod O , Rabani E . Self-assembly of nanoparticles in three-dimensions: formation of stalagmites[J]. The Journal of Physical Chemistry, B, 2005, 109(14): 6741-6747.
33 Stannard A . Dewetting-mediated pattern formation in nanoparticle assemblies[J]. Journal of Physics. Condensed Matter, 2011, 23(8): 083001.
34 Tagliabue A , Izzo L , Mella M . Out of equilibrium self-assembly of Janus nanoparticles: steering it from disordered amorphous to 2D patterned aggregates [J]. Langmuir, 2016, 32(48): 12934-12946.
[1] 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78.
[2] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[3] 谢昭明, 邓容锐, 刘作华, 邓丽, 李千文, 张柱, 殷兆迁, 陶长元. 钠化焙烧转炉钒渣粉体分形生长的演化行为[J]. 化工学报, 2019, 70(5): 1904-1912.
[4] 刘皓, 张天巍, 夏登友, 梁强, 王淮斌. 凝胶型核壳结构粉体抑制A类火的有效性研究[J]. 化工学报, 2019, 70(4): 1652-1660.
[5] 喻健良, 侯玉洁, 闫兴清, 纪文涛, 于小哲, 王祎博. 密闭空间内聚乙烯粉尘爆炸火焰传播特性的实验研究[J]. 化工学报, 2019, 70(3): 1227-1235.
[6] 常景彩, 王翔, 王鹏, 崔琳, 李军, 张鑫, 马春元. 静电场中极板表面液膜蒸发特性研究[J]. 化工学报, 2019, 70(3): 865-873.
[7] 闫鑫, 徐进良. 超疏水表面太阳能加热金-水纳米流体液滴蒸发特性[J]. 化工学报, 2019, 70(3): 892-900.
[8] 张航, 翁建华, 崔晓钰. 吸湿性盐溶液振荡热管的传热特性研究[J]. 化工学报, 2019, 70(3): 874-882.
[9] 向文军, 朱朝菊, 刘丹, 周绿山. 分子动力学模拟研究两亲聚合物与疏水纳米粒子自组装核-壳结构[J]. 化工学报, 2019, 70(1): 345-354.
[10] 王凯, 王德武, 侯得印, 袁子怡, 王军. 自组装法制备PVDF-SiO2/PVSQ超疏水复合膜及膜蒸馏抗污染性能[J]. 化工学报, 2019, 70(1): 298-308.
[11] 王姣, 金哲珺雨, 丁开宁, 赵微微, 蒲小华, 李宗孝. MoO3掺杂对二氧化硅吸附Cu(Ⅱ)影响的Monte Carlo模拟[J]. 化工学报, 2019, 70(1): 355-359.
[12] 熊晓俊, 何婷, 林文胜. 利用常温压缩机处理LNG接收站BOG的工艺探讨[J]. 化工学报, 2018, 69(S2): 425-430.
[13] 余超群, 臧润清, 段振坤. 太阳能蒸汽喷射式制冷机性能[J]. 化工学报, 2018, 69(S2): 205-209.
[14] 梁星宇, 刘洪鑫, 曹祥, 邵亮亮, 张春路. 压缩机和喷射器耦合的双级蒸发喷射循环性能分析[J]. 化工学报, 2018, 69(S2): 26-30.
[15] 陈景祥, 李蔚, 朱华, 金春花, 杜锦才, 张政江, 刘丽. 三维双侧强化管内R410A蒸发换热特性[J]. 化工学报, 2018, 69(S2): 76-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 游晓艳, 秦炜, 戴猷元. Phase Separation Behavior of Cocamidopropyl Betaine/Water/Polyethylene Glycol System[J]. , 2009, 17(5): 746 -749 .
[2] 耿艳楼, 胡利彦, 赵新强, 安华良, 王延吉. Synthesis of 4,4'-MDC in the Presence of Sulfonic Acid-functionalized Ionic Liquids[J]. , 2009, 17(5): 756 -760 .
[3] 郑辉东, 王碧玉, 吴燕翔, 任其龙. Instability Mechanisms of Supported Liquid Membrane for Phenol Transport[J]. , 2009, 17(5): 750 -755 .
[4] 徐泽辉, 夏蓉晖, 郭世卓, 范存良, 房鼎业. Improvement of Isomerization Process of Crude Isoamylene with Tertiary-amyl-alcohol Addition[J]. , 2009, 17(5): 761 -766 .
[5] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[6] 印佳敏, 吴占松. Corrosion Behavior of TP316L of Superheater in Biomass Boiler with Simulated Atmosphere and Deposit[J]. , 2009, 17(5): 849 -853 .
[7] 陈育如, 虞启明, 徐红卫, 陈雁. Oxygen Transfer and Hydrodynamics in a Flexible Fibre Biofilm Reactor for Wastewater Treatment[J]. , 2009, 17(5): 879 -882 .
[8] 黄雪莉, 李松菀. Liquid-solid Equilibria in Quinary System Na+, K+, Mg2+//Cl-, NO3--H2O at 25℃[J]. , 2011, 19(1): 101 -107 .
[9] 罗小明, 何利民, 马华伟. Flow Pattern and Pressure Fluctuation of Severe Slugging in Pipeline-riser System[J]. , 2011, 19(1): 26 -32 .
[10] 蔡双飞, 王利生. Epoxidation of Unsaturated Fatty Acid Methyl Esters in the Presence of SO3H-functional Brφnsted Acidic Ionic Liquid as Catalyst[J]. , 2011, 19(1): 57 -63 .