化工学报 ›› 2019, Vol. 70 ›› Issue (6): 2252-2258.doi: 10.11949/j.issn.0438-1157.20181522

• 能源和环境工程 • 上一篇    下一篇

锥芯可调型引射技术变工况适应性实验研究

刘培启(),何昕琛,陈佳,郭江涛,席建宇,胡大鹏()   

  1. 大连理工大学化工机械与安全学院,辽宁 大连 116023
  • 收稿日期:2018-12-27 修回日期:2019-02-17 出版日期:2019-06-05 发布日期:2019-06-06
  • 通讯作者: 胡大鹏 E-mail:lpq21cn@dlut.edu.cn;hudp@dlut.edu.cn
  • 作者简介:<named-content content-type="corresp-name">刘培启</named-content>(1981—),男,博士,副教授,<email>lpq21cn@dlut.edu.cn</email>
  • 基金资助:
    国家科技重大专项项目(2016ZX05066005-002);国家自然科学基金项目(21676048);大连市高层次人才创新支持计划项目(2016RQ01)

Variable working condition adaptability of cone core adjustable ejector

Peiqi LIU(),Xinchen HE,Jia CHEN,Jiangtao GUO,Jianyu XI,Dapeng HU()   

  1. School of Chemical Machinery and Safety Engineering, Dalian University of Technology, Dalian 116023, Liaoning, China
  • Received:2018-12-27 Revised:2019-02-17 Online:2019-06-05 Published:2019-06-06
  • Contact: Dapeng HU E-mail:lpq21cn@dlut.edu.cn;hudp@dlut.edu.cn

摘要:

随着天然气井开发时间的推移,井口压力逐渐降低,低压井口的增压集输成为研究热点。目前,常用的天然气引射技术由于结构尺寸固定,对气井的压力和流量的变化适应性差,使其运行效率普遍较低。据此,设计加工了一台锥芯可调型引射器装置,并对其变工况性能进行了实验研究。结果表明随着可调锥的深入,高压口流量减小,可实现70%左右的流量调节,而且调节过程中低压口流量几乎保持不变,从而使得装置引射率ξ提高,可见该引射技术具有很强的抗流量波动能力。随着可调锥的深入,装置对应的最佳膨胀比增大,从而提高了装置对大膨胀比工况的适应性。同样压缩比下,装置引射效率会随着可调锥的深入而提高,但会降低装置有效引射的压缩比范围。

关键词: 天然气, 实验验证, 优化设计, 引射技术, 可调性

Abstract:

With the development of natural gas wells, the wellhead pressure is gradually reduced, and the pressurized gathering and gathering of low-pressure wellheads has become a research hotspot. At present, the common natural gas injection technology has a poor adaptability to gas well pressure and flow due to its fixed structural size, which makes its operating efficiency generally low. Based on this, the cone core adjustable ejector device was designed and processed, and its performance under variable working conditions was studied experimentally. The results show that with the inward movement of the adjustable cone, the flow rate of the high pressure port is reduced, and a wide range of flow adjustment of about 70% can be achieved; Moreover, the flow rate of the low-pressure port is almost unchanged during the adjustment process, so that the ejector rate of the device is improved, and the cone-core adjustable ejector technology has strong resistance to flow fluctuation. With the deepening of adjustable cone, the optimal expansion ratio of the device increases. Thus, the adaptability of the device to the condition of large expansion ratio is improved. At the same compression ratio, the efficiency of the device's ejection increases with the depth of the adjustable cone, but it reduces the range of compression ratios that the device effectively emits.

Key words: natural gas, experimental validation, optimal design, ejection technique, adjustability

中图分类号: 

  • TE 377

图1

调节锥式可调式引射器"

图2

调距式引射器"

图3

锥芯式引射装置"

图4

实验流程"

图5

引射器关键结构实物图"

图6

可调锥位置与高压入口流量关系"

图7

可调锥位置与低压入口流量的关系"

图8

可调锥位置与引射率的关系"

图9

P m =0.13 MPa、Pl = 0.1 MPa时,具有可调锥结构的引射器性能曲线"

图10

P m =0.165 MPa、Pl = 0.1 MPa 时,具有可调锥结构的引射器性能曲线"

图11

引射率随压缩比的变化曲线"

图12

膨胀比为8.0时,不同调节锥位置下引射率随压缩比的变化曲线"

图13

膨胀比为6.5时,不同调节锥位置下引射率随压缩比的变化曲线"

图14

膨胀比为5.0时,不同调节锥位置下引射率随压缩比的变化曲线"

1 嵇国华, 索美娟 . 高压气井井下节流工艺[J]. 石油机械, 2010, 38(4): 87-88.
Ji G H , Suo M J . Downhole throttling process for high pressure gas wells[J]. Petroleum Machinery, 2010, 38(4): 87-88.
2 张洪杰, 朱琳, 解永海, 等 . 天然气引射技术在低压积液气井中的试验与应用[J]. 新疆石油天然气, 2014, 10(2): 76-80+8.
Zhang H J , Zhu L , Xie Y H , et al . Experiment and application of natural gas ejection technology in low pressure liquid-liquid gas well[J]. Xinjiang Oil and Gas, 2014, 10(2): 76-80+8.
3 文昌玉, 苏鹏, 王磊, 等 . 低压气井井口增压开采技术[J]. 石油钻采工艺, 2015, 37(5): 124-125.
Wen C Y , Su P , Wang L , et al . Pressurized mining technology of low pressure gas well head [J]. Oil Drilling Technology, 2015, 37(5): 124-125.
4 沈坚, 胡国新 . 引射器及引射循环在工程中的应用[J]. 煤气与热力, 2005, (1): 34-38.
Shen J , Hu G X . Application of ejector and ejection cycle in engineering[J]. Gas & Heat, 2005, (1): 34-38.
5 胡述明 . 喷射泵在低压天然气采输中的应用[J]. 石油矿厂机械, 2011, 40(8): 62-64.
Hu S M . Application of jet pumps in low pressure gas production and transportation[J]. Machinery for Petroleum Mines, 2011, 40(8): 62-64.
6 杨德伟, 林日亿, 王弥康, 等 . 利用喷射器技术输送低压气层天然气[J]. 油气田地面工程, 2005, 24(4): 10-12.
Yang D W , Lin R Y , Wang M K , et al . Injector technology is used to transport gas in low pressure gas layer[J]. Oil-Gasfield Surface Engineering, 2005, 24(4): 10-12.
7 胡均志, 王雅萍, 刘慧, 等 . 可调式喷射引流装置在榆林气田的应用[J]. 石油化工应用, 2012, 31(12): 60-61+68.
Hu J Z , Wang Y P , Liu H , et al . Application of adjustable jet drainage device in Yulin gas field[J]. Petrochemical Industry Application, 2012, 31(12): 60-61+68.
8 张书平, 刘双全, 陈德见 . 天然气喷射引流技术在靖边气田的应用试验[J]. 新疆石油天然气, 2008, 10(2): 113-119.
Zhang S P , Liu S Q , Chen D J . Application test of jet drainage technology of natural gas in Jingbian gas field[J]. Xinjiang Oil & Gas, 2008, 10(2): 113-119.
9 王晓荣, 王惠, 宋汉华, 等 . 实现低压气井增压开采的喷射引流技术[J]. 石油化工应用, 2009, 28(6): 25-27.
Wang X R , Wang H , Song H H , et al . Jet drainage technology for pressurized exploitation of low pressure gas wells is realized[J]. Petrochemical Industry Application, 2009, 28(6): 25-27.
10 Elrod H G . The theory of ejectors[J]. ASME Journal of Applied Mechanics, 1945. 67: 170-174.
11 索科洛夫 . 喷射泵[M]. 北京: 科学出版社, 1977.
Sokolow . Ejector[M]. Beijing: Science Press, 1977.
12 Sun D W , Eames I W . Recent developments in the design theories and application of ejectors—a review[J]. Journal of the Institute of Energy, 1995. 68: 65-79.
13 宓亢琪 . 天然气引射器特性方程与工况的研究[J]. 煤气与热力, 2006, (6): 1-5.
Fu K Q . Study on characteristic equation and working condition of natural gas ejector[J]. Gas & Heat, 2006, (6): 1-5.
14 Pereira P R , Varga S , Soares J , et al . Experimental results with a variable geometry ejector using R600a as working fluid[J]. International Journal of Refrigeration, 2014, 46: 77-85.
15 Keenan J H , Neumann E P , Lustwerk F . An investigation of ejector design by analysis and experiment[J]. ASME Journal of Applied Mechanics, 1950, 72: 299-309.
16 Zheng L X , Deng J Q , Zhang Z X . Dynamic simulation of an improved transcritical CO2 ejector expansion refrigeration cycle[J]. Energy Conversion and Management, 2016, 114: 278-289.
17 Liu F , Groll E A , Ren J . Comprehensive experimental performance analyses of an ejector expansion transcritical CO2 system[J]. Applied Thermal Engineering, 2016, 98: 1061-1069
18 李熠桥 . 可调式蒸汽喷射器性能计算分析[D]. 大连: 大连理工大学, 2015.
Li Y Q . Calculation and analysis of adjustable steam ejector performance [D]. Dalian: Dalian University of Technology, 2015.
19 浦晖 . 可调式引射器的流动特性研究[D]. 福州: 福州大学, 2005.
Pu H . Study on flow characteristics of adjustable ejector [D]. Fuzhou : Fuzhou University, 2005.
20 蒋小丽 . 高压气井针形节流阀结构性能分析与优化[D]. 南充: 西南石油大学, 2014.
Jiang X L . Structural performance analysis and optimization of high pressure gas well needle throttle valve [D]. Nanchong: Southwest Petroleum University, 2014.
21 曾伟, 吴巍巍 . 基于Fluent的高压针形节流阀冲蚀磨损分析[J]. 内江科技, 2013, 34(6): 74-79.
Zeng W , Wu W W . Analysis of erosion wear of high pressure needle throttle valve based on Fluent[J]. NEI JIANG KE JI, 2013, 34(6): 74-79.
22 张奕, 陈丹丹, 石嵩 . 花瓣喷嘴引射器引射系数的数值分析[J]. 南京师范大学学报(工程技术版), 2012, 12(1): 29-32.
Zhang W , Chen D D , Shi S . Numerical analysis of the injecting coefficient of petal nozzle ejector[J]. Journal of Nanjing Normal University(Engineering & Technology Edition), 2012, 12(1): 29-32.
23 陆宏圻 . 射流泵技术的理论及应用[M]. 沈阳: 水利电力出版社, 1989.
Lu H Q . Theory and Application of Jet Pump Technology [M]. Shenyang: Water Conservancy and Electric Power Press, 1989.
24 Cattadoti G , Galbiati L , Mazzocchi L , et al . A single-stage high-pressure steam injector for next generation reactors test results and analysis[J]. International Journal of Multiphase Flow, 1995, 21(4): 591-606.
25 Liu F , Groll E . Study of ejector efficiencies in refrigeration cycles[J]. Applied Thermal Engineering, 2013, 52(2): 360-370.
26 Chen J Y , Havtun H , Palm B . Parametric analysis of ejector working characteristics in the refrigeration system[J]. Applied Thermal Engineering, August 2014, 69(1/2): 130-142.
27 Zhu Y H , Huang Y L , Li C H . Experimental investigation on the performance of transcritical CO2 ejector–expansion heat pump water heater system[J]. Energy Conversion and Management, 2018, 167: 147–155
28 Zheng L X , Deng J Q , Zhang Z X . Dynamic simulation of an improved transcritical CO2 ejector expansion refrigeration cycle[J]. Energy Conversion and Management, 2016, 114: 278–289.
29 Banasiak K , Hafner A . 1D Computational model of a two-phase R744 ejector for expansion work recovery [J]. International Journal of Thermal Sciences, 2011, 50: 2235-2247.
30 Ameur K , Aidoun Z , Ouzzane M . Modeling and numerical approach for the design and operation of two-phase ejectors [J]. Applied Thermal Engineering, 2016, 109: 809-818.
31 Chen J Y , Jarall S , Havtun H , et al . A review on versatile ejector applications in refrigeration systems[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 67-90.
[1] 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
[2] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[3] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[4] 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831.
[5] 吴降麟, 张朝晖, 王亮, 赵斌, 李腾飞, 陈萌萌. 宽流道反渗透膜元件抗污染性能分析[J]. 化工学报, 2019, 70(4): 1446-1454.
[6] 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308.
[7] 沈伟伟, 邓道明, 刘乔平, 宫敬. 基于环雾流理论的气井临界流速预测模型[J]. 化工学报, 2019, 70(4): 1318-1330.
[8] 邱君君, 张小松, 李玮豪. 无霜空气源热泵系统冬季除湿性能初步实验[J]. 化工学报, 2019, 70(4): 1605-1613.
[9] 朱明汉, 白鹏飞, 胡艳鑫, 黄金. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357.
[10] 徐奇超, 江锦波, 彭旭东, 李纪云, 王玉明. 基于遗传算法的干气密封双向槽统一模型与参数优化[J]. 化工学报, 2019, 70(3): 995-1005.
[11] 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
[12] 杨杰, 祁江羽, 沙勇. 反应精馏隔壁塔制甲缩醛过程模拟与分析[J]. 化工学报, 2019, 70(3): 960-968.
[13] 朱顺, 郭琦, 张大伟, 杨庆春. 集成CO2高效利用的煤制乙二醇过程设计与系统分析[J]. 化工学报, 2019, 70(2): 772-779.
[14] 胡松, 李进龙, 李木金, 杨卫胜. 萃取精馏生产高纯度环氧丙烷的工艺研究[J]. 化工学报, 2019, 70(2): 670-677.
[15] 穆瑞, 乐高杨, 杨慧中. 基于O3/UV法在线COD检测的气体溶解量估计方法[J]. 化工学报, 2019, 70(2): 730-735.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 游晓艳, 秦炜, 戴猷元. Phase Separation Behavior of Cocamidopropyl Betaine/Water/Polyethylene Glycol System[J]. , 2009, 17(5): 746 -749 .
[2] 耿艳楼, 胡利彦, 赵新强, 安华良, 王延吉. Synthesis of 4,4'-MDC in the Presence of Sulfonic Acid-functionalized Ionic Liquids[J]. , 2009, 17(5): 756 -760 .
[3] 郑辉东, 王碧玉, 吴燕翔, 任其龙. Instability Mechanisms of Supported Liquid Membrane for Phenol Transport[J]. , 2009, 17(5): 750 -755 .
[4] 徐泽辉, 夏蓉晖, 郭世卓, 范存良, 房鼎业. Improvement of Isomerization Process of Crude Isoamylene with Tertiary-amyl-alcohol Addition[J]. , 2009, 17(5): 761 -766 .
[5] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[6] 印佳敏, 吴占松. Corrosion Behavior of TP316L of Superheater in Biomass Boiler with Simulated Atmosphere and Deposit[J]. , 2009, 17(5): 849 -853 .
[7] 陈育如, 虞启明, 徐红卫, 陈雁. Oxygen Transfer and Hydrodynamics in a Flexible Fibre Biofilm Reactor for Wastewater Treatment[J]. , 2009, 17(5): 879 -882 .
[8] 黄雪莉, 李松菀. Liquid-solid Equilibria in Quinary System Na+, K+, Mg2+//Cl-, NO3--H2O at 25℃[J]. , 2011, 19(1): 101 -107 .
[9] 罗小明, 何利民, 马华伟. Flow Pattern and Pressure Fluctuation of Severe Slugging in Pipeline-riser System[J]. , 2011, 19(1): 26 -32 .
[10] 蔡双飞, 王利生. Epoxidation of Unsaturated Fatty Acid Methyl Esters in the Presence of SO3H-functional Brφnsted Acidic Ionic Liquid as Catalyst[J]. , 2011, 19(1): 57 -63 .