化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2496-2502.doi: 10.11949/j.issn.0438-1157.20181504
Guowen XU(),Kun LI,Yifan JIANG,Mingjun HUANG,Dongxu FANG,Shanshan CAI(
)
摘要:
地埋管换热器的换热能力是设计地源热泵系统的关键,而环境土壤的有效热导率是影响地下传热量的重要参数。为探究土壤的介观结构参数对有效热导率的影响,提出三类随机分形结构,并结合格子玻尔兹曼方法,对土壤类多孔材料的传热特性进行了基础研究。通过对热探针实验结果和三类重构结构下模拟结果的对比分析,发现孔隙率仍然是影响干土壤有效热导率的主要因素,分形维度数和粒径比的影响则较小;干土壤介观结构的随机性对有效热导率有较大的影响,随机颗粒分布的微小变化会导致差异高达到24.5%。
中图分类号:
1 | DongY, MccartneyJ S, LuN. Critical review of thermal conductivity models for unsaturated soils[J]. Geotechnical and Geological Engineering, 2015, 33(2): 207-221. |
2 | AlrtimiA, RouainiaM, HaighS. Thermal conductivity of a sandy soil[J]. Applied Thermal Engineering, 2016, 106: 551-560. |
3 | ZhangN, WangZ Y. Review of soil thermal conductivity and predictive models[J]. International Journal of Thermal Sciences, 2017, 117: 172-183. |
4 | TurcotteD L. Fractals and fragmentation[J]. Journal of Geophysical Research, 1986, 91(B2): 1921-1926. |
5 | 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896-1899. |
YangP L, LuoY P, ShiY C. Fractal characteristics of soil characterized by weight distribution of particle sizes[J]. Chinese Science Bulletin, 1993, 38(20): 1896-1899. | |
6 | KouJ L, WuF M, LuH J, et al. The effective thermal conductivity of porous media based on statistical self-similarity[J]. Physics Letters A, 2009, 374(1): 62-65. |
7 | CaiS S, CuiT F, ZhengB R, et al. A fractal approach to calculate the thermal conductivity of moist soil[C]// Proceedings of the IGSHPA Technical/Research Conference and Expo 2017. Denver: IGSHPA, 2017: 420-429. |
8 | LehmannP, StähliM, PapritzA, et al. A fractal approach to model soil structure and to calculate thermal conductivity of soils[J]. Transport in Porous Media, 2003, 52(3): 313-332. |
9 | ThompsonA H, KatzA J, KrohnC E. The microgeometry and transport properties of sedimentary rock[J]. Advances in Physics, 1987, 36(5): 625-694. |
10 | QinX, CaiJ C, XuP, et al. A fractal model of effective thermal conductivity for porous media with various liquid saturation[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1149-1156. |
11 | WangY Y, MaC, LiuY F, et al. A model for the effective thermal conductivity of moist porous building materials based on fractal theory[J]. International Journal of Heat and Mass Transfer, 2018, 125: 387-399. |
12 | 张东辉, 金峰, 施明恒, 等. 分形多孔介质中的热传导[J]. 应用科学学报, 2003, 21(3): 253-257. |
ZhangD H, JinF, ShiM H, et al. Heat conduction in fractal porous media [J]. Journal of Applied Sciences, 2003, 21(3): 253-257. | |
13 | JinH Q, YaoX L, FanL W, et al. Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: effects of moisture content[J]. International Journal of Heat and Mass Transfer, 2016, 92: 589-602. |
14 | JuY, ZhengJ T, EpsteinM, et al. 3D numerical reconstruction of well-connected porous structure of rock using fractal algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 279: 212-226. |
15 | YuB M, ZouM Q, FengY J. Permeability of fractal porous media by Monte Carlo simulations[J]. International Journal of Heat and Mass Transfer, 2005, 48(13): 2787-2794. |
16 | MaierR S, BernardR S. Lattice-Boltzmann accuracy in pore-scale flow simulation[J]. Journal of Computational Physics, 2010, 229(2): 233-255. |
17 | ZhangX X, CrawfordJ W, YoungI M. A lattice Boltzmann model for simulating water flow at pore scale in unsaturated soils[J]. Journal of Hydrology, 2016, 538: 152-160. |
18 | FanH, ZhengH. MRT-LBM-based numerical simulation of seepage flow through fractal fracture networks[J]. Science China Technological Sciences, 2013, 56(12): 3115-3122. |
19 | WangM R, WangJ K, PanN, et al. Three-dimensional effect on the effective thermal conductivity of porous media[J]. Journal of Physics D: Applied Physics, 2007, 40(1): 260-265. |
20 | WangM R, PanN. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1325-1331. |
21 | FangW Z, ChenL, GouJ J, et al. Predictions of effective thermal conductivities for three-dimensional four-directional braided composites using the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2016, 92: 120-130. |
22 | CuiZ D, JiaY J. Analysis of electron microscope images of soil pore structure for the study of land subsidence in centrifuge model tests of high-rise building groups[J]. Engineering Geology, 2013, 164: 107-116. |
23 | CaiS S, ZhangB X, CuiT F, et al. Mesoscopic study of the effective thermal conductivity of dry and moist soil[J]. International Journal of Refrigeration, 2019, 98: 171-181. |
24 | YuB M. Fractal character for tortuous streamtubes in porous media[J]. Chinese Physics Letters, 2005, 22(1): 158-160. |
25 | ChenX, HanP. A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms[J]. International Journal of Heat and Fluid Flow, 2000, 21(4): 463-467. |
26 | WangM R, WangJ K, PanN, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E, 2007, 75(3): 036702. |
27 | GinzburgI, VerhaegheF, D'HumièresD. Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions[J]. Communications in Computational Physics, 2008, 3(2): 427-478. |
28 | D'OrazioA, CorcioneM, CelataG P. Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition[J]. International Journal of Thermal Sciences, 2004, 43(6): 575-586. |
29 | ZouQ S, HeX Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6): 1591-1598. |
30 | 崔腾飞. 渗流影响下的地埋管换热器全尺度传热研究[D]. 武汉: 华中科技大学, 2018. |
CuiT F. Full-scale heat transfer analysis of ground heat exchangers with the effect of groundwater flow[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
31 | MandelbrotB B. The Fractal Geometry of Nature[M]. New York: W. H. Freeman and Co., 1983. |
[1] | 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92. |
[2] | 杨浩, 闫二艳. 基于束能推进的微波加热效率仿真[J]. 化工学报, 2019, 70(S1): 93-98. |
[3] | 于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225. |
[4] | 陈巨辉, 韩坤, 王帅, 李铭坤, 陈纪元, 马明. 基于反扰动非平衡分子动力学的纳米流体导热增强机理研究[J]. 化工学报, 2019, 70(6): 2147-2152. |
[5] | 谢昭明, 邓容锐, 刘作华, 邓丽, 李千文, 张柱, 殷兆迁, 陶长元. 钠化焙烧转炉钒渣粉体分形生长的演化行为[J]. 化工学报, 2019, 70(5): 1904-1912. |
[6] | 刘万强, 陆海霞, 刘凤萍, 陈冠凡, 胡田, 岳明, 仇明华. 应用势能极小原理有限元解法的一元醇液体热导率估算[J]. 化工学报, 2019, 70(4): 1245-1254. |
[7] | 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856. |
[8] | 蔡改贫, 宗路, 刘鑫, 罗小燕. 基于MEEMD-多尺度分形盒维数和ELM的球磨机负荷识别方法[J]. 化工学报, 2019, 70(2): 764-771. |
[9] | 吴渊默, 张守玉, 张华, 慕晨, 李昊, 宋晓冰, 吕俊复. 高温干燥对褐煤孔隙结构及水分复吸的影响[J]. 化工学报, 2019, 70(1): 199-206. |
[10] | 李静岩, 刘中良, 周宇, 李艳霞. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 2019, 70(1): 72-82. |
[11] | 周孙希, 章学来, 刘升, 陈启杨, 徐笑锋, 王迎辉. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1): 290-297. |
[12] | 许嘉兴, 晁京伟, 李廷贤, 王如竹. 膨胀石墨/有机金属骨架复合吸附材料的制备及性能研究[J]. 化工学报, 2018, 69(S2): 492-499. |
[13] | 梁林, 刁彦华, 康亚盟, 赵耀华, 魏向前, 陈传奇. 平板微热管阵列-泡沫铜复合结构相变蓄热装置蓄放热特性[J]. 化工学报, 2018, 69(S1): 34-42. |
[14] | 杜东兴, 张丹, 李莺歌, 巢昆, 马连湘. 泡沫液在均质多孔介质内动态驱替过程的二维数值模拟研究[J]. 化工学报, 2018, 69(S1): 48-52. |
[15] | 胡沛裕, 王树刚, 宋双林, 蒋爽, 梁运涛. 基于完全并行细化算法的孔隙网络中轴提取方法[J]. 化工学报, 2018, 69(S1): 26-33. |