化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2496-2502.doi: 10.11949/j.issn.0438-1157.20181504

• 流体力学与传递现象 • 上一篇    下一篇

三类随机分形结构下干土壤有效热导率的介观研究

徐国稳(),李坤,蒋祎璠,黄明骏,房东旭,蔡姗姗()   

  1. 华中科技大学能源与动力工程学院,湖北 武汉 430074
  • 收稿日期:2018-12-24 修回日期:2019-04-16 出版日期:2019-07-05 发布日期:2019-04-17
  • 通讯作者: 蔡姗姗 E-mail:xgw_smile@hust.edu.cn;shanshc@hust.edu.cn
  • 作者简介:徐国稳(1996—),男,硕士研究生,<email>xgw_smile@hust.edu.cn</email>
  • 基金资助:
    国家自然科学基金项目(51706078);湖北省自然科学基金项目(2017CFB131)

Mesoscopic study on effective thermal conductivity of dry soil under three types of random fractal structures

Guowen XU(),Kun LI,Yifan JIANG,Mingjun HUANG,Dongxu FANG,Shanshan CAI()   

  1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2018-12-24 Revised:2019-04-16 Online:2019-07-05 Published:2019-04-17
  • Contact: Shanshan CAI E-mail:xgw_smile@hust.edu.cn;shanshc@hust.edu.cn

摘要:

地埋管换热器的换热能力是设计地源热泵系统的关键,而环境土壤的有效热导率是影响地下传热量的重要参数。为探究土壤的介观结构参数对有效热导率的影响,提出三类随机分形结构,并结合格子玻尔兹曼方法,对土壤类多孔材料的传热特性进行了基础研究。通过对热探针实验结果和三类重构结构下模拟结果的对比分析,发现孔隙率仍然是影响干土壤有效热导率的主要因素,分形维度数和粒径比的影响则较小;干土壤介观结构的随机性对有效热导率有较大的影响,随机颗粒分布的微小变化会导致差异高达到24.5%。

关键词: 多孔介质, 分形, 热导率, 热传导, 格子玻尔兹曼方法, 热探针

Abstract:

The heat transfer capacity of the ground heat exchanger is the key to designing the ground source heat pump system, and the effective thermal conductivity of the environmental soil is an important parameter affecting the underground heat transfer. To further investigate the impacts of mesoscopic structural parameters on the effective thermal conductivity of soil, this paper proposes three random fractal structures and applys lattice Boltzmann method to simulate the heat transfer procedure in the soil-like porous materials. By comparing and analyzing the simulation results with the experimental findings which are derived from thermal probe tests, it is found that porosity is still the dominant factor that affects the effective thermal conductivity of dry soil, while the impacts of fractal dimension and size ratio are minor. The randomness of phase distribution in the dry soil does have considerable effect on the variations of effective thermal conductivity. A slight change of the particle distribution can lead to a difference up to 24.5%.

Key words: porous media, fractal, thermal conductivity, heat conduction, lattice Boltzmann method, thermal probe

中图分类号: 

  • TK 521.2

图1

三类随机分形结构(白色—固相,黑色—气相)"

图2

热探针热导率测量装置的结构示意图"

表1

测试样本的颗粒粒径和质量分布"

组别粒径/mm
0.6~0.80.8~1.01.0~1.51.5~2.02.0~2.52.5~3.03.0~3.553.55~4
1218.548.6117.6113.7110.8108.6117.494.7
2415.949.1104.588.177.670.170.753.9
3573.839.779.462.552.345.444.232.7

表2

测试样本的主要参数"

组别密度/(kg?m-3)孔隙率分形维度数粒径比
111250.370,0.414,0.4332.15
211250.370,0.414,0.4332.55
311250.370,0.414,0.4332.75

表3

干砂样数值结果与实验结果对比"

组别孔隙率

实验结果/

(W?(m?K)-1)

数值结果/(W?(m?K)-1)相对误差/%
MCF多边形MCF圆形QSGS&MCFMCF多边形MCF圆形QSGS&MCF
10.3700.15730.14660.14470.17546.808.03-11.51
0.4140.14720.12380.11810.144015.8719.792.17
0.4330.14800.11260.11150.129623.9124.6612.43
20.3700.15740.14890.14620.17945.387.11-13.98
0.4140.15440.12320.12220.151420.1820.861.94
0.4330.15210.11670.11640.129623.2823.4414.79
30.3700.16730.14440.14860.182513.6811.17-9.09
0.4140.15630.12360.12590.146820.9319.426.08
0.4330.15580.11680.11220.138825.0127.9810.91

图3

试样有效热导率随不同影响因素的变化规律"

1 DongY, MccartneyJ S, LuN. Critical review of thermal conductivity models for unsaturated soils[J]. Geotechnical and Geological Engineering, 2015, 33(2): 207-221.
2 AlrtimiA, RouainiaM, HaighS. Thermal conductivity of a sandy soil[J]. Applied Thermal Engineering, 2016, 106: 551-560.
3 ZhangN, WangZ Y. Review of soil thermal conductivity and predictive models[J]. International Journal of Thermal Sciences, 2017, 117: 172-183.
4 TurcotteD L. Fractals and fragmentation[J]. Journal of Geophysical Research, 1986, 91(B2): 1921-1926.
5 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896-1899.
YangP L, LuoY P, ShiY C. Fractal characteristics of soil characterized by weight distribution of particle sizes[J]. Chinese Science Bulletin, 1993, 38(20): 1896-1899.
6 KouJ L, WuF M, LuH J, et al. The effective thermal conductivity of porous media based on statistical self-similarity[J]. Physics Letters A, 2009, 374(1): 62-65.
7 CaiS S, CuiT F, ZhengB R, et al. A fractal approach to calculate the thermal conductivity of moist soil[C]// Proceedings of the IGSHPA Technical/Research Conference and Expo 2017. Denver: IGSHPA, 2017: 420-429.
8 LehmannP, StähliM, PapritzA, et al. A fractal approach to model soil structure and to calculate thermal conductivity of soils[J]. Transport in Porous Media, 2003, 52(3): 313-332.
9 ThompsonA H, KatzA J, KrohnC E. The microgeometry and transport properties of sedimentary rock[J]. Advances in Physics, 1987, 36(5): 625-694.
10 QinX, CaiJ C, XuP, et al. A fractal model of effective thermal conductivity for porous media with various liquid saturation[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1149-1156.
11 WangY Y, MaC, LiuY F, et al. A model for the effective thermal conductivity of moist porous building materials based on fractal theory[J]. International Journal of Heat and Mass Transfer, 2018, 125: 387-399.
12 张东辉, 金峰, 施明恒, 等. 分形多孔介质中的热传导[J]. 应用科学学报, 2003, 21(3): 253-257.
ZhangD H, JinF, ShiM H, et al. Heat conduction in fractal porous media [J]. Journal of Applied Sciences, 2003, 21(3): 253-257.
13 JinH Q, YaoX L, FanL W, et al. Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: effects of moisture content[J]. International Journal of Heat and Mass Transfer, 2016, 92: 589-602.
14 JuY, ZhengJ T, EpsteinM, et al. 3D numerical reconstruction of well-connected porous structure of rock using fractal algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 279: 212-226.
15 YuB M, ZouM Q, FengY J. Permeability of fractal porous media by Monte Carlo simulations[J]. International Journal of Heat and Mass Transfer, 2005, 48(13): 2787-2794.
16 MaierR S, BernardR S. Lattice-Boltzmann accuracy in pore-scale flow simulation[J]. Journal of Computational Physics, 2010, 229(2): 233-255.
17 ZhangX X, CrawfordJ W, YoungI M. A lattice Boltzmann model for simulating water flow at pore scale in unsaturated soils[J]. Journal of Hydrology, 2016, 538: 152-160.
18 FanH, ZhengH. MRT-LBM-based numerical simulation of seepage flow through fractal fracture networks[J]. Science China Technological Sciences, 2013, 56(12): 3115-3122.
19 WangM R, WangJ K, PanN, et al. Three-dimensional effect on the effective thermal conductivity of porous media[J]. Journal of Physics D: Applied Physics, 2007, 40(1): 260-265.
20 WangM R, PanN. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1325-1331.
21 FangW Z, ChenL, GouJ J, et al. Predictions of effective thermal conductivities for three-dimensional four-directional braided composites using the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2016, 92: 120-130.
22 CuiZ D, JiaY J. Analysis of electron microscope images of soil pore structure for the study of land subsidence in centrifuge model tests of high-rise building groups[J]. Engineering Geology, 2013, 164: 107-116.
23 CaiS S, ZhangB X, CuiT F, et al. Mesoscopic study of the effective thermal conductivity of dry and moist soil[J]. International Journal of Refrigeration, 2019, 98: 171-181.
24 YuB M. Fractal character for tortuous streamtubes in porous media[J]. Chinese Physics Letters, 2005, 22(1): 158-160.
25 ChenX, HanP. A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms[J]. International Journal of Heat and Fluid Flow, 2000, 21(4): 463-467.
26 WangM R, WangJ K, PanN, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E, 2007, 75(3): 036702.
27 GinzburgI, VerhaegheF, D'HumièresD. Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions[J]. Communications in Computational Physics, 2008, 3(2): 427-478.
28 D'OrazioA, CorcioneM, CelataG P. Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition[J]. International Journal of Thermal Sciences, 2004, 43(6): 575-586.
29 ZouQ S, HeX Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6): 1591-1598.
30 崔腾飞. 渗流影响下的地埋管换热器全尺度传热研究[D]. 武汉: 华中科技大学, 2018.
CuiT F. Full-scale heat transfer analysis of ground heat exchangers with the effect of groundwater flow[D]. Wuhan: Huazhong University of Science and Technology, 2018.
31 MandelbrotB B. The Fractal Geometry of Nature[M]. New York: W. H. Freeman and Co., 1983.
[1] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[2] 杨浩, 闫二艳. 基于束能推进的微波加热效率仿真[J]. 化工学报, 2019, 70(S1): 93-98.
[3] 于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225.
[4] 陈巨辉, 韩坤, 王帅, 李铭坤, 陈纪元, 马明. 基于反扰动非平衡分子动力学的纳米流体导热增强机理研究[J]. 化工学报, 2019, 70(6): 2147-2152.
[5] 谢昭明, 邓容锐, 刘作华, 邓丽, 李千文, 张柱, 殷兆迁, 陶长元. 钠化焙烧转炉钒渣粉体分形生长的演化行为[J]. 化工学报, 2019, 70(5): 1904-1912.
[6] 刘万强, 陆海霞, 刘凤萍, 陈冠凡, 胡田, 岳明, 仇明华. 应用势能极小原理有限元解法的一元醇液体热导率估算[J]. 化工学报, 2019, 70(4): 1245-1254.
[7] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
[8] 蔡改贫, 宗路, 刘鑫, 罗小燕. 基于MEEMD-多尺度分形盒维数和ELM的球磨机负荷识别方法[J]. 化工学报, 2019, 70(2): 764-771.
[9] 吴渊默, 张守玉, 张华, 慕晨, 李昊, 宋晓冰, 吕俊复. 高温干燥对褐煤孔隙结构及水分复吸的影响[J]. 化工学报, 2019, 70(1): 199-206.
[10] 李静岩, 刘中良, 周宇, 李艳霞. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 2019, 70(1): 72-82.
[11] 周孙希, 章学来, 刘升, 陈启杨, 徐笑锋, 王迎辉. 癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能[J]. 化工学报, 2019, 70(1): 290-297.
[12] 许嘉兴, 晁京伟, 李廷贤, 王如竹. 膨胀石墨/有机金属骨架复合吸附材料的制备及性能研究[J]. 化工学报, 2018, 69(S2): 492-499.
[13] 梁林, 刁彦华, 康亚盟, 赵耀华, 魏向前, 陈传奇. 平板微热管阵列-泡沫铜复合结构相变蓄热装置蓄放热特性[J]. 化工学报, 2018, 69(S1): 34-42.
[14] 杜东兴, 张丹, 李莺歌, 巢昆, 马连湘. 泡沫液在均质多孔介质内动态驱替过程的二维数值模拟研究[J]. 化工学报, 2018, 69(S1): 48-52.
[15] 胡沛裕, 王树刚, 宋双林, 蒋爽, 梁运涛. 基于完全并行细化算法的孔隙网络中轴提取方法[J]. 化工学报, 2018, 69(S1): 26-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈育如, 虞启明, 徐红卫, 陈雁. Oxygen Transfer and Hydrodynamics in a Flexible Fibre Biofilm Reactor for Wastewater Treatment[J]. , 2009, 17(5): 879 -882 .
[2] 范燕平, 王庆印, 杨先贵, 姚洁, 王公应. Synthesis of Didodecyl Carbonate via Transesterification Catalyzed by KF/MgO[J]. , 2009, 17(5): 883 -886 .
[3] 李进龙, 何清, 何昌春, 彭昌军, 刘洪来. Representation of Phase Behavior of Ionic Liquids Using the Equation of State for Square-well Chain Fluids with Variable Range[J]. , 2009, 17(6): 983 -989 .
[4] 黄雪莉, 李松菀. Liquid-solid Equilibria in Quinary System Na+, K+, Mg2+//Cl-, NO3--H2O at 25℃[J]. , 2011, 19(1): 101 -107 .
[5] 罗小明, 何利民, 马华伟. Flow Pattern and Pressure Fluctuation of Severe Slugging in Pipeline-riser System[J]. , 2011, 19(1): 26 -32 .
[6] 刘公平, 侯丹, 卫旺, 相里粉娟, 金万勤. Pervaporation Separation of Butanol-Water Mixtures Using Polydimethylsiloxane/Ceramic Composite Membrane[J]. , 2011, 19(1): 40 -44 .
[7] 罗明良, 温庆志, 刘佳林, 刘洪见, 贾自龙. Fabrication of SPES/Nano-TiO2 Composite Ultrafiltration Membrane and Its Anti-fouling Mechanism[J]. , 2011, 19(1): 45 -51 .
[8] 蔡双飞, 王利生. Epoxidation of Unsaturated Fatty Acid Methyl Esters in the Presence of SO3H-functional Brφnsted Acidic Ionic Liquid as Catalyst[J]. , 2011, 19(1): 57 -63 .
[9] 沈剑, 何潮洪. Isolation and Purification of Triptolide from the Leaves of Tripterygium wilfordii Hook F[J]. , 2010, 18(5): 750 -754 .
[10] 郭秀娟, 王树荣, 王琦, 郭祚刚, 骆仲泱. Properties of Bio-oil from Fast Pyrolysis of Rice Husk[J]. , 2011, 19(1): 116 -121 .