化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1750-1760.doi: 10.11949/j.issn.0438-1157.20181470

• 流体力学与传递现象 • 上一篇    下一篇

并联双U形桩基埋管换热器热-力学特征的数值仿真研究

张爽1(),赵蕾1(),高林1,刘华2   

  1. 1. 西安建筑科技大学建筑设备科学与工程学院,陕西 西安 710055
    2. 西安建筑科技大学土木工程学院,陕西 西安 710055
  • 收稿日期:2018-12-12 修回日期:2019-02-26 出版日期:2019-05-05 发布日期:2019-05-10
  • 通讯作者: 赵蕾 E-mail:944459447@qq.com;leizhao0308@hotmail.com
  • 作者简介:<named-content content-type="corresp-name">张爽</named-content>(1993—),男,硕士研究生,<email>944459447@qq.com</email>|赵蕾(1971—),女,博士,教授,<email>leizhao0308@hotmail.com</email>
  • 基金资助:
    国家自然科学基金项目(51878535);国家科技部科技支撑计划项目(2014BAJ01B01)

Exploration on thermo-mechanical characteristics of energy piles with double-U pipes buried in parallel by means of numerical simulations

Shuang ZHANG1(),Lei ZHAO1(),Lin GAO1,Hua LIU2   

  1. 1. School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China
    2. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China
  • Received:2018-12-12 Revised:2019-02-26 Online:2019-05-05 Published:2019-05-10
  • Contact: Lei ZHAO E-mail:944459447@qq.com;leizhao0308@hotmail.com

摘要:

桩基埋管换热器(能量桩)作为土壤源热泵的末端换热装置同时需承担常规桩基功能。因此,除其换热性能应满足空调供暖负荷需求之外,其间歇交替从周围土壤取、放热所引起的桩基应力变化亦不应危及上部建筑结构的稳定性。为了深刻揭示能量桩的热-力学特征,联合使用Comsol和Abaqus软件建立了并联双U形桩基埋管换热器的三维动态数值仿真模型,利用现场实测结果验证了仿真结果的正确性,分析了桩基内部的动态温度分布、轴力分布以及桩身位移状况;进一步探究了四种不同桩基长径比、流速情况下的双U形埋管以及三种不同埋管形式的桩基换热器的换热性能和力学特征,揭示了出口水温和单位桩深换热量等动态换热性能以及桩身轴力和桩顶位移等力学性能参数的时变特性。结果表明埋管形式和桩基长径比对桩基埋管换热器换热和力学性能的影响较显著,流速的影响较弱;长径比和流速越大,埋管的换热能力越大,但进、出口水温温差也越大,由温度变化所引起的附加桩身轴力、桩顶位移以及侧摩阻力也相应增大。

关键词: 计算流体力学, 热力学, 传热, 实验验证, 数值模拟

Abstract:

Pile-based borehole heat exchangers (energy piles) can be used as terminal heat transfer devices for ground source heat pumps, playing the role of conventional pile foundations at the same time. Thus, not only their heat transfer performances must be good enough to meet heating or cooling air conditioning demands, but also the stress changes caused by intermittent heat extraction and release alternatively from and to the soil surroundings should not endanger the stability of building structures above. To reveal the thermo-mechanical characteristics of energy piles sufficiently, the software of Comsol and Abaqus were implemented jointly to establish a three-dimensional dynamic numerical simulation model for an energy pile with double-U pipes buried in parallel. Simulation results were validated by the data obtained during an in-situ test. Dynamic temperature distributions inside pile body, axial force distributions and the displacement of the pile body were analyzed. The heat transfer performances and mechanical characteristics of four energy piles in different ratios of pile length-to-diameter with double-U pipes buried in parallel were studied under the conditions of different water flow rates, as well as those of energy piles with three different forms of buried pipes. The results show that the influence of the form of the buried pipes and that of the length-to-diameter ratio of the pile on their heat transfer and mechanical performance are significant, and the influence of the flow velocity is weak. The larger the length-diameter ratio and the flow velocity, the greater the heat transfer capacity, the larger the temperature difference between the inlet and outlet water. And the additional pile axial forces, pile top displacements and side frictional resistances caused by temperature changes increase as well accordingly.

Key words: computational fluid dynamics, thermodynamics, heat transfer, experimental verification, numerical simulation

中图分类号: 

  • TU 473

图1

所模拟的桩基并联双U形埋管及其周围土壤计算域的几何尺寸"

图2

并联双U形桩基埋管换热器及桩基内部网格划分情况"

图3

72 h连续排热工况下的动态出口水温和桩顶位移实测值与模拟值对比"

表1

工程现场实测相关参数"

参数 数值
桩基弹性模量E/GPa 30
桩基热导率/(W· m - 1 · K-1) 1.92
桩基热膨胀系数/℃-1 10-5
管壁热导率/(W· m - 1 · K-1) 0.42
管壁比热容/(J· k g - 1 · K-1) 1465
土壤密度/(kg·m-3) 1930
土壤弹性模量E/GPa 0.015
土壤内摩擦角/(°) 31
桩基泊松比 0.2
桩基密度/(kg·m-3) 2500
桩基比热/(J· k g - 1 · K-1) 837
管壁密度/(kg·m-3) 1100
土壤热导率/(W· m - 1 · K-1) 1.87
土壤比热容/(J· k g - 1 · K-1) 1200
土壤泊松比 0.33
土壤膨胀角/(°) 0

图4

桩基各时刻沿径向温升曲线和第72小时不同深度处的径向温度场"

图5

沿桩深方向桩心、桩周及土壤区域的温度分布"

图6

连续排热72 h内双U形埋管出口水温及单位桩深换热量"

图7

温度变化引起并联双U形桩基换热器桩身轴力"

图8

第72小时不同深度处桩基轴力的径向分布曲线"

图9

温度变化引起双U形埋管桩基侧摩阻力变化值"

图10

不同流速下出口水温及换热量随时间的变化"

图11

排热工况下(第72小时)不同流速时桩身轴力、桩身位移和桩侧摩阻力分布"

图12

不同桩基长径比下动态换热性能的比较"

图13

排热工况下(第72小时)不同长径比时桩身轴力、桩身位移和桩侧摩阻力分布"

图14

不同埋管形式下的动态换热性能的比较"

图15

排热模式下(第72小时)不同埋管形式情况下桩身轴力、桩身位移和桩侧摩阻力分布"

1 Morino K , Oka T . Study on heat exchanged in soil by circylating water in a steel pile[J].Energy and Buildings, 1994, 21(1): 65-78.
2 Donna A D , Loria A F R , Laloui L . Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads [J]. Computers & Geotechnics, 2016, 72: 126-142.
3 Murphy K D , Mccartney J S , Henry K S . Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations [J]. Acta Geotechnica, 2015, 10(2): 179-195.
4 Cecinato F , Loveridge F A . Influences on the thermal efficiency of energy piles[J]. Energy, 2015, 82: 1021-1033.
5 Zhao Q , Chen B , Liu F . Study on the thermal performance of several types of energy pile ground heat exchangers: U-shaped, W-shaped and spiral-shaped [J]. Energy & Buildings, 2016, 133: 335-344.
6 Park S , Lee D , Choi H J , et al . Relative constructability and thermal performance of cast-in-place concrete energy pile: coil-type GHEX (ground heat exchanger)[J]. Energy, 2015, 81: 56-66.
7 Zarrella A , Carli M D , Galgaro A . Thermal performance of two types of energy foundation pile: helical pipe and triple U-tube [J]. Applied Thermal Engineering, 2013, 61(2): 301-310.
8 Xin L I , Fang L , Fang Z H , et al . Coil heat source model for embedded spiral tube-based geothermal heat exchangers and its analytical solutions[J]. Journal of Engineering for Thermal Energy & Power, 2011, 26(4): 475-345.
9 Faizal M , Bouazza A , Rao M S . Heat transfer enhancement of geothermal energy piles [J]. Renewable & Sustainable Energy Reviews, 2016, 57: 16-33.
10 赵海丰, 桂树强, 李强, 等 . 螺旋型埋管能源桩桩内温度场分布特征及其影响因素分析[J]. 长江科学院院报, 2017, 34(8): 153-158.
Zhao H F , Gui S Q , Li Q , et al . Analysis of temperature field distribution characteristics and influencing factors in spiral buried energy piles[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(8): 153-158.
11 Eskilson P . Thermal analysis of heat extraction boreholes [D]. Lund, Sweden: Lund University, 1987.
12 Cui P , Li X , Man Y , et al . Heat transfer analysis of pile geothermal heat exchangers with spiral coils[J]. Apply Energy, 2011, 88(11): 4113-4119.
13 Selamat S , Miyara A , Kariya K . Numerical study of horizontal ground heat exchangers for design optimization[J].Renewable Energy, 2016, 95: 561-573.
14 Cane R L D , Forgas D A . Modeling of GSHP performance [J].ASHRAE Trans., 1991, 97(1): 909-925.
15 Dia N R , Cui P , Liu J H , et a1 . R&D of the ground-coupled heat pump technology in China[J]. Frontiers of Energy and Power Engineering in China, 2010, 4(1): 47-54.
16 Zhang W K , Yang H X , Lu L , et al . Investigation on heat transfer around buried coils of pile foundation heat exchangers for ground-coupled heat pump applications[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 6023-6031.
17 Wang C L , Liu H L , Kong G Q , et al . Different types of energy piles with heating–cooling cycles[J]. Geotechnical Engineering, 2017, 170(3): 1-12.
18 Gashti E H N , MalasKa M , Kujala K . Evaluation of thermo-mechanical behaviour of composite energy piles during heating/cooling operations [J]. Engineering Structures, 2014, 75(2): 363-373.
19 赵强 . 螺旋埋管能量桩换热器的传热研究[D].济南: 山东大学, 2018.
Zhao Q . Study on heat transfer of spiral buried energy pile heat exchanger [D]. Jinan: Shandong University, 2018.
20 杨涛, 花永盛, 刘律智 . 悬浮能量桩热-力学基本特性的数值模拟[J]. 防灾减灾工程学报, 2017, (4): 518 - 524.
Yang T , Hua Y S , Liu L Z . Numerical simulation of the basic characteristics of thermal-mechanical properties of suspended energy piles[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, (4): 518-524.
21 Brandl H . Energy foundations and thermo-active ground structures [J]. Geotechnique. 2006, 56(2): 81-122.
22 Yuan L C , Jie Z , Fan R M . Techno-economic evaluation of multiple energy piles for a ground-coupled heat pump system[J]. Energy Conversion and Management, 2018, 178: 200-216.
23 Lazaros A , Paul C , Georgios F . A review of the design aspects of ground heat exchangers[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 753-773.
24 黄旭, 孔纲强, 刘汉龙, 等 .不封底PCC能量桩与传统能量桩换热效率对比研究[J].防灾减灾工程学报, 2018, 38(5): 867-873.
Huang X , Kong G Q , Liu H L , et al . Comparative study on heat transfer efficiency between PCC energy piles and traditional energy piles without sealing [J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 867-873.
25 Laloui L , Moreni M , Vulliet L . Comportement d'un pieu bi-fonction, fondation et échangeur de chaleur[J]. Canadian Geotechnical Journal, 2003, 40(2): 388-402(15).
26 Bourne -Webb P G , Amatya B , Soga K , et al . Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Geotechnique, 2009, 59(3): 237-248.
27 桂树强, 程晓辉 .能源桩换热过程中结构响应原位试验研究[J].岩土工程学报, 2014, 36(6): 1087-1094.
Gui S Q , Cheng X H . In-situ experimental study on structural response of energy piles during heat transfer[J].Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094.
28 Go G H , Lee S R , Yoon S , et al . Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects [J]. Applied Energy, 2014, 125: 165-178.
29 王成龙, 刘汉龙, 孔纲强, 等 . 不同埋管形式下能量桩热力学特性模型试验研究[J]. 工程力学, 2017, 34(1): 85-91.
Wang C L , Liu H L , Kong G Q , et al . Model test study on thermodynamic characteristics of energy piles under different buried pipes[J]. Engineering Mechanics, 2017, 34(1): 85-91.
30 Batini N , Loria A F R , Conti P , et al . Energy and geotechnical behaviour of energy piles for different design solutions [J]. Applied Thermal Engineering, 2015, 86: 199-213.
[1] 梅道锋, 赵海波, 晏水平. 基于NiO/Ca2Al2SiO7的沼气自热化学链重整制氢热分析动力学模拟[J]. 化工学报, 2019, 70(S1): 193-201.
[2] 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78.
[3] 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
[4] 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34.
[5] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[6] 林俊杰, 罗坤, 王帅, 胡陈枢, 樊建人. coarse-grained CFD-DEM方法在不同流态流化床中的模拟验证[J]. 化工学报, 2019, 70(5): 1702-1712.
[7] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[8] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[9] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[10] 颜建国, 朱凤岭, 郭鹏程, 罗兴锜. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787.
[11] 汪勤, 张冰剑, 何畅, 陈清林. 基于能量目标的芳烃萃取精馏溶剂评价模型[J]. 化工学报, 2019, 70(5): 1815-1822.
[12] 苏武, 石孝刚, 吴迎亚, 高金森, 蓝兴英. 乙炔加氢制乙烯浆态床反应器的CFD模拟[J]. 化工学报, 2019, 70(5): 1858-1867.
[13] 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831.
[14] 佟颖, Ahmad Nouman, 鲁波娜, 王维. 基于EMMS介尺度模型的双分散鼓泡流化床的模拟[J]. 化工学报, 2019, 70(5): 1682-1692.
[15] 杨俊兰, 宁淑英. 紧凑通道内CO2/润滑油混合物沸腾换热特性研究[J]. 化工学报, 2019, 70(5): 1772-1778.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .