化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1923-1931.doi: 10.11949/j.issn.0438-1157.20181452

• 能源和环境工程 • 上一篇    下一篇

基于化学链燃烧的转炉放散煤气利用研究

武永健1(),罗春欢1,2,魏琳1,朱探金1,苏庆泉1,2()   

  1. 1. 北京科技大学能源与环境工程学院,北京 100083
    2. 北京冶金工业节能减排重点实验室,北京 100083
  • 收稿日期:2018-12-05 修回日期:2019-02-11 出版日期:2019-05-05 发布日期:2019-05-10
  • 通讯作者: 苏庆泉 E-mail:wuyongjian@xs.ustb.edu.cn;suqingquan@ustb.edu.cn
  • 作者简介:<named-content content-type="corresp-name">武永健</named-content>(1992—),男,博士研究生,<email>wuyongjian@xs.ustb.edu.cn</email>|苏庆泉(1961—),男,博士,教授,<email>suqingquan@ustb.edu.cn</email>
  • 基金资助:
    北京市科技基金资助项目(Z131100005613045)

Utilization of converter off-gas based on chemical-looping combustion

Yongjian WU1(),Chunhuan LUO1,2,Lin WEI1,Tanjin ZHU1,Qingquan SU1,2()   

  1. 1. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
    2. Beijing Key Laboratory of Energy Conservation and Emission Reduction for Metallurgical Industry, Beijing 100083, China
  • Received:2018-12-05 Revised:2019-02-11 Online:2019-05-05 Published:2019-05-10
  • Contact: Qingquan SU E-mail:wuyongjian@xs.ustb.edu.cn;suqingquan@ustb.edu.cn

摘要:

在固定床反应器和热重分析仪上对浸渍法制备的过渡金属氧化物载氧体MnO2/Al2O3、Fe2O3/Al2O3和CuO/Al2O3与转炉放散煤气中CO的反应特性进行了研究,并结合比表面积分析、脉冲化学吸附和扫描电镜等手段表征了CuO/Al2O3的循环寿命性能。结果表明,在上述三种载氧体中CuO/Al2O3表现出了最佳的反应活性,反应进行2 min时的CO转化率在225℃以上的反应温度下就能达到90%。在350℃、还原反应空速4000 h-1和氧化反应空速159 h-1的条件下,CuO/Al2O3能够保持良好且稳定的CO脱除性能和机械强度,因而具有良好的循环寿命。据此,提出了基于化学链燃烧的转炉放散煤气利用新工艺,本工艺可安全利用间歇排放的转炉放散煤气,并实现对用户的连续供热。

关键词: 转炉放散煤气, CO, 化学链燃烧, 载氧体, 还原, 氧化, 循环寿命, 固定床反应器

Abstract:

Characteristics of the reduction reactions between transition metal oxide oxygen carriers (OCs) including MnO2/Al2O3, Fe2O3/Al2O3 and CuO/Al2O3 prepared by an impregnation method and CO in converter off-gas were investigated using a fixed bed reactor and a thermogravimetric analyzer. Surface area analysis, pulse chemisorption and scanning electron microscopy were used to characterize the cycle life performance of CuO/Al2O3. The results show that CuO/Al2O3 exhibit the best reactivity among the three OCs, and the CO conversion at the reaction time of 2 min reach 90% when the reaction temperature is 225℃ or higher. Moreover, CuO/Al2O3 can maintain the high and stable performance of CO removal and mechanical strength at 350℃, a gas hourly space velocity (GHSV) of 4000 h-1 in the reduction reaction and a GHSV of 159 h-1 in the oxidation reaction, exhibiting an excellent redox cycle life. Based on these findings, a new process based on CLC has been proposed, with which the intermittently discharged converter off-gas can be safely utilized, thereby achieving the continuous heat supply to users.

Key words: converter off-gas, carbon monoxide, chemical-looping combustion, oxygen carrier, reduction, oxidation, cycle life, fixed-bed reactor

中图分类号: 

  • X 756

图1

典型的转炉生产周期"

图2

载氧体的反应性能评价装置"

图3

样品失重和热流曲线"

图4

三种载氧体的还原反应中,空速2000 h-1时, 450℃下,出口气体中CO浓度随反应时间的变化及 X C O , 2 随反应温度的变化"

图5

空速4000 h-1、温度350℃,CuO/Al2O3的还原反应出口气体中CO浓度和 X R , t 随时间的变化(a)及空速159 h-1、温度350℃,Cu/Al2O3的氧化反应出口气体中O2浓度和 X O , t 随时间的变化(b)"

图6

CuO/Al2O3样品的扫描电镜图"

图7

CuO/Al2O3循环寿命实验中, X C O , 2 、还原反应的床层压降、载氧体的平均破碎强度随循环次数的变化"

表1

不同循环次数下的CuO/Al2O3的比表面积、孔容、孔径及CO吸附量"

循环次数 比表面积/(m2?g-1) 孔容/(ml?g-1) 平均孔径/nm CO化学吸附量/(ml?g-1)
0 164.78 0.376 9.12 1.60
3000 156.81 0.382 9.87 1.43
6000 145.52 0.375 10.41 1.15
9000 131.44 0.381 12.15 0.54
12000 114.54 0.389 13.60 0.32

图8

基于化学链燃烧的转炉放散煤气利用新工艺"

表2

还原反应和氧化反应的热力学数据"

反应

Δ G 350 0 /

(kJ·mol-1)

Δ H 350 0 /

(kJ·mol-1)

还原反应

2CuO + CO ? Cu2O + CO2 -154.56 -146.22
Cu2O + CO ? 2Cu + CO2 -105.38 -113.80

氧化反应

4Cu + O2 ? 2Cu2O -246.45 -339.58
2Cu2O + O2 ? 4CuO -148.10 -274.74
1 赵贤聪, 白皓, 李宏煦, 等 . 钢铁生产过程富余煤气动态优化分配模型[J]. 工程科学学报, 2015, 37(1): 97-105.
Zhao X C , Bai H , Li H X , et al . Dynamic optimal distribution model of surplus byproduct gases in iron and steel making process[J]. Chinese J. Eng., 2015, 37(1): 97-105.
2 刘辉, 王雯, 魏晓明, 等 . 工业副产煤气的资源化利用研究进展[J]. 现代化工, 2016, 36(4): 46-52.
Liu H , Wang W , Wei X M , et al . Research progress of utilization of industrial by-product gas[J]. Mod. Chem. Ind., 2016, 36(4): 46-52.
3 潘秀兰, 常桂华, 冯士超, 等 . 转炉煤气回收和利用技术的最新进展[J]. 冶金能源, 2010, 29(5): 37-42.
Pan X L , Chang G H , Feng S C , et al . Recent progress of recovery and utilization technology of converter gas[J]. Energ. Metall. Ind., 2010, 29(5): 37-42.
4 王永忠, 施锦德 . 转炉煤气节能减排的几种技术措施[J]. 世界钢铁, 2009, 9(4): 39-44.
Wang Y Z , Shi J D . Several technical measures about energy-saving and emission-reduction of BOF gas[J]. World Iron Steel, 2009, 9(4): 39-44.
5 于鹏飞, 曾加庆, 林腾昌, 等 . 国内转炉煤气回收概况与研究展望[J]. 铸造技术, 2018, 39(1): 240-245.
Yu P F , Zeng J Q , Lin T C , et al . General situation and research prospect of converter gas recovery in China[J]. Foundry Technol., 2018, 39(1): 240-245.
6 尹茂建, 黄伟 . 提高转炉煤气吨钢回收量措施探讨[J]. 冶金动力, 2011, (s 1): 18-19.
Yin M J , Huang W . Increasing the amount of converter gas recovery per ton of steel[J]. Metall. Power, 2011, (s 1): 18-19.
7 秦勇 . 提高转炉煤气回收量的研究与应用[J]. 冶金动力, 2013, (3): 27-29.
Qin Y . Research and application of enhancing converter gas recovery amount[J]. Metall. Power, 2013, (3): 27-29.
8 王爱华, 蔡九菊, 王鼎, 等 . 转炉煤气回收规律及其影响因素研究[J]. 冶金能源, 2004, 23(4): 52-55.
Wang A H , Cai J J , Wang D , et al . Research on LDG recovery law and its affecting factors[J]. Energ. Metall. Ind., 2004, 23(4): 52-55.
9 Wang A H , Cai J J , Li X P , et al . Affecting factors and improving measures for converter gas recovery[J]. J. Iron Steel Res. Int., 2007, 14(6): 22-26.
10 Li S , Wei X L . Numerical simulation of CO and NO emissions during converter off-gas combustion in the cooling stack[J]. Combust. Sci. Technol., 2013, 185(2): 212-225.
11 Li S , Wei X L , Yu L X . Numerical study on NO x /CO emissions in the diffusion flames of high-temperature off-gas of steelmaking converter[J]. Appl. Energ., 2011, 88(4): 1113-1119.
12 Sandlobes S , Senk D , Sancho L , et al . In-situ measurement of CO- and CO2-concentrations in BOF off-gas[J]. Steel Res. Int., 2011, 82(6): 632-637.
13 Maruoka N , Akiyama T . Exergy recovery from steelmaking off-gas by latent heat storage for methanol production[J]. Energy, 2006, 31(10/11): 1632-1642.
14 高强, 贾琼 . 转炉煤气热值波动大影响用户使用的分析[J]. 冶金能源, 2011, 30(5): 38-40.
Gao Q , Jia Q . Analysis on the fluctuation of the heat value for converter gas[J]. Energ. Metall. Ind., 2011, 30(5): 38-40.
15 Nandy A , Loha C , Gu S , et al . Present status and overview of chemical looping combustion technology[J]. Renew. Sust. Energ. Rev., 2016, 59: 597-619.
16 覃吴, 李渠, 董长青, 等 . Co-Fe2O3 纳米载氧体作用下CO 化学链燃烧富集CO2 [J]. 化工学报, 2014, 65(8): 3136-3143.
Qin W , Li Q , Dong C Q , et al . CO chemical looping combustion using Co-Fe2O3 nano oxygen carrier for enrichment of CO2 [J]. CIESC Journal, 2014, 65(8): 3136-3143.
17 Zhang H , Hong H , Jiang Q Q , et al . Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4 [J]. Applied Energy, 2018, 211: 259-268.
18 Bhavsar S , Isenberg N , More A , et al . Lanthana-doped ceria as active support for oxygen carriers in chemical looping combustion[J]. Appl. Energ., 2016, 168: 236-247.
19 Adánez J , Abad A , Garcia-Labiano F , et al . Progress in chemical-looping combustion and reforming technologies[J]. Prog. Energ. Combust. Sci., 2012, 38(2): 215-282.
20 Li J , Zhang H D , Gao Z P , et al . CO2 capture with chemical looping combustion of gaseous fuels: an overview[J]. Energ. Fuel, 2017, 31(4): 3475-3524.
21 Song Q , Liu W , Bohn C D , et al . A high performance oxygen storage material for chemical looping processes with CO2 capture[J]. Energ. Environ. Sci., 2013, 6: 288-298.
22 Tian Q , Che L X , Ding B , et al . Performance of Cu-Fe-based oxygen carrier in a CLC process based on fixed bed reactors[J]. Greenh. Gases, 2017, 7(4): 731-744.
23 Gallucci F , Hamers H P , van Zanten M , et al . Experimental demonstration of chemical looping combustion of syngas in packed bed reactors with ilmenite[J]. Chem. Eng. J., 2015, 274: 156-168.
24 Hwang J H , Baek J I , Ryu H J , et al . Development of MgMnO3- δ as an oxygen carrier material for chemical looping combustion[J]. Fuel, 2018, 231: 290-296.
25 彭松, 曾德望, 陈超, 等 . 具有自载体功能的CoFeAlO4载氧体化学链燃烧反应特性[J]. 化工学报, 2018, 69(1): 515-522.
Peng S , Zeng D W , Chen C , et al . Chemical looping combustion performance of CoFeAlO4 oxygen carrier with self-supported function[J]. CIESC Journal, 2018, 69(1): 515-522.
26 Zheng X M , Su Q Q , Mi W L . Effect of steam reforming on methane-fueled chemical looping combustion with Cu-based oxygen carrier[J]. Int. J. Hydrogen Energ., 2014, 39(17): 9158-9168.
27 Arjmand M , Leion H , Mattisson T , et al . Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels[J]. Appl. Energ., 2014, 113: 1883-1894.
28 Perez-Vega R , Abad A , Garcia-Labiano F , et al . Chemical looping combustion of gaseous and solid fuels with manganese iron mixed oxide as oxygen carrier[J]. Energ. Convers. Manage., 2018, 159: 221-231.
29 Kwak B S , Park N K , Ryu H J , et al . Reduction and oxidation performance evaluation of manganese-based iron, cobalt, nickel, and copper bimetallic oxide oxygen carriers for chemical-looping combustion[J]. Appl. Therm. Eng., 2018, 128: 1273-1281.
30 Jiang S X , Shen L H , Wu J , et al . The investigations of hematite-CuO oxygen carrier in chemical looping combustion[J]. Chem. Eng. J., 2017, 317: 132-142.
[1] 于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225.
[2] 梅道锋, 赵海波, 晏水平. 基于NiO/Ca2Al2SiO7的沼气自热化学链重整制氢热分析动力学模拟[J]. 化工学报, 2019, 70(S1): 193-201.
[3] 尚志新, 张香兰. γ-巯丙基三乙氧基硅烷水解程度对纳米二氧化硅接枝机理影响的DFT研究[J]. 化工学报, 2019, 70(5): 1663-1673.
[4] 刘亚敏, 彭蕾, 苏凤英, 王湘湘, 黄艺真, 林在春, 喻晓静, 裴义山. 多孔胺基化氧化石墨烯基材料对CO2的吸附性能研究[J]. 化工学报, 2019, 70(5): 2016-2024.
[5] 杨俊兰, 宁淑英. 紧凑通道内CO2/润滑油混合物沸腾换热特性研究[J]. 化工学报, 2019, 70(5): 1772-1778.
[6] 闫景春, 沈来宏, 蒋守席, 葛晖骏. 高钠煤化学链燃烧特性及煤焦气化反应动力学研究[J]. 化工学报, 2019, 70(5): 1913-1922.
[7] 毛燕东, 李克忠, 刘雷, 辛峰. 添加剂对催化气化工艺中煤灰结渣性及气化性能影响研究[J]. 化工学报, 2019, 70(5): 1951-1963.
[8] 林俊杰, 罗坤, 王帅, 胡陈枢, 樊建人. coarse-grained CFD-DEM方法在不同流态流化床中的模拟验证[J]. 化工学报, 2019, 70(5): 1702-1712.
[9] 颜建国, 朱凤岭, 郭鹏程, 罗兴锜. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787.
[10] 马双忱, 范紫瑄, 万忠诚, 陈嘉宁, 张净瑞, 马采妮. 高盐水条件下亚硫酸盐氧化特性实验研究[J]. 化工学报, 2019, 70(5): 1964-1972.
[11] 王彩红, 孙婧, 季书馨, 王燕子, 刘文芳. 聚乙烯亚胺/多巴胺改性氧化硅固定碳酸酐酶[J]. 化工学报, 2019, 70(5): 1887-1893.
[12] 韩健, 刘新华, 何京东, 李虹嶙, 张楠. 民用解耦燃煤炉中的NO x 和CO同时减排[J]. 化工学报, 2019, 70(5): 1991-1998.
[13] 朱兵国, 吴新明, 张良, 孙恩慧, 张海松, 徐进良. 垂直上升管内超临界CO2 流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290.
[14] 于海斌, 刘强, 周立坤, 陈赞, 罗超, 张贯艳, 乔利娜, 王建杰. MnO x /ZrO2 催化剂制备及催化臭氧氧化降解甲基橙[J]. 化工学报, 2019, 70(4): 1436-1445.
[15] 梁文胜, 刘江涛, 赵月, 黄伟, 左志军. NiO和Ni催化剂对苯甲酸热解机理的理论计算[J]. 化工学报, 2019, 70(4): 1429-1435.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .