化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 23-27.doi: 10.11949/j.issn.0438-1157.20181413

• 热力学 • 上一篇    下一篇

微波电场对甘油水溶液体系中氢键的影响

商辉(),刘露,王瀚墨,张文慧   

  1. 中国石油大学(北京)重质油国家重点实验室,北京 102249
  • 收稿日期:2018-11-26 修回日期:2018-12-26 出版日期:2019-03-31 发布日期:2019-04-26
  • 通讯作者: 商辉 E-mail:huishang@cup.edu.cn
  • 作者简介:商辉(1974—),女,博士研究生,副研究员,<email>huishang@cup.edu.cn</email>
  • 基金资助:
    国家自然科学基金面上项目(21476258)

Effect of microwave field on hydrogen bonds in glycerol aqueous solution system

Hui SHANG(),Lu LIU,Hanmo WANG,Wenhui ZHANG   

  1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
  • Received:2018-11-26 Revised:2018-12-26 Online:2019-03-31 Published:2019-04-26
  • Contact: Hui SHANG E-mail:huishang@cup.edu.cn

摘要:

通过分子动力学模拟考察微波电场对不同水含量甘油溶液中氢键的影响。研究发现:甘油含量高时,甘油分子在溶液中以较大的团簇结构存在,水分子以较小的团簇结构或游离状态存在,电场作用下,大的甘油分子团簇变成较小的团簇并且变得更加有序;随着电场强度继续增加,甘油分子整体结构变化不大,但是团簇结构边缘甘油分子氢键断裂,变成游离状态。对于水分子而言,其较小的团簇结构在电场作用下被打开,团簇结构消失,水分子在电场方向上整齐排布,且电场强度继续增大,其结构变化不大,同样个别水分子氢键断裂变成游离状态。因此,甘油浓度高时,水分子间氢键数减少,甘油分子氢键数先增大后略微减少;甘油浓度低时,水分子氢键数先增大后略有减少,甘油分子间氢键减少。

关键词: 微波, 甘油, 水溶液, 氢键, 分子模拟, 模型

Abstract:

Molecular dynamics simulation was employed to investigate the effect of the microwave on the hydrogen bond in the glycerol aqueous solution with different concentration. It was observed that at higher glycerol concentration, glycerol molecules existed in large clusters, whilst water in small clusters or at free state. The clusters of glycerol molecules changed from large to small and became more ordered under the electric field. As the electric field intensity further increased, the overall structure of glycerol molecule did not change obviously, the hydrogen bonds at the edge of glycerol clusters were found broken. For water molecules, smaller clusters under the effect of electric field were broken and disappeared, so water molecules were arranged neatly in the direction of electric field. As the electric field intensity continues to increase, the structure of water remained unchanged, and the hydrogen bonds of water changed to a free state. Therefore at higher glycerol concentration, the hydrogen bonds of water decreased, and those of glycerol first increased and then decreased slightly; at lower glycerol concentration, hydrogen bonds of water increased first and then decreased slightly, while those of glycerol decreased.

Key words: microwave, glycerol, aqueous solution, hydrogen bond, molecular simulation, model

中图分类号: 

  • TQ 015.9

表1

甘油水溶液模拟参数"

含水率/ %(vol)甘油密度/(g/ml)
109424181.252
208388351.224
3073312521.196
5052320881.139
7031429231.083
9010537581.027

表2

不同电场强度下20%水含量甘油水溶液中的氢键数目"

电场强度/

(V/nm)

甘油-甘油氢键甘油-水氢键水-水氢键总氢键数甘油平均氢键数水平均氢键数
01464349238241952.163.27
201556450220242082.393.18
501622552203642102.593.10
651592590200641882.603.11

图1

径向分布函数"

图2

甘油分子中氧原子与氧原子的径向分布函数"

图3

水分子结构在场强为0和65 V/nm时的变化"

表3

不同电场强度下70%水含量甘油水溶液中的氢键数目"

电场强度/

(V/nm)

甘油-甘油氢键甘油-水氢键水-水氢键总氢键数甘油平均氢键数水平均氢键数
025420110212106671.453.56
2024625610370108721.603.64
5020233810334108741.723.65
6514438410304108321.683.66

图4

甘油-水分子结构在电场强度为0、65 V/nm时的变化"

1 BehrendsR, FuchsK, KaatzeU, et al. Dielectric properties of glycerol/water mixtures at temperatures between 10 and 50 degrees C[J]. Journal of Chemical Physics, 2006, 124(14): 1417.
2 SatoT, ChibaA, NozakiR. Hydrophobic hydration and molecular association in methanol–water mixtures studied by microwave dielectric analysis[J]. Journal of Chemical Physics, 2000, 112(6): 2924-2932.
3 HiejimaY, YaoM. Dielectric relaxation of lower alcohols in the whole fluid phase[J]. Journal of Chemical Physics, 2003, 119(15): 7931-7942.
4 SchwerdtfegerS, KöhlerF, PottelR, et al. Dielectric relaxation of hydrogen bonded liquids: mixtures of monohydric alcohols with n-alkanes[J]. Journal of Chemical Physics, 2001, 115(9): 4186-4194.
5 董秀丽. 小分子和水分子间氢键的理论研究[D]. 曲阜: 曲阜师范大学, 2005.
DongX L. Theoretical study of hydrogen bonds between small molecules and water molecules[D]. Qufu: Qufu Normal University, 2005.
6 NewtonfriendJ, HargreavesW X C. Viscosity and the hydrogen bond[J]. Philosophical Magazine, 1945, 36(262): 731-756.
7 蒋华义. 微波对高凝油作用规律的实验研究[J]. 油气田地面工程, 2004, 23(3): 14-14.
JiangH Y. Experimental study on the effect of microwave on high coagulation oil[J]. Oil-Gasfield Surface Engineering, 2004, 23(3): 14-14.
8 张兆镗. 微波加热技术基础[M]. 北京: 电子工业出版社, 1988: 12.
ZhangZ T. Microwave Heating Technology Foundation[M]. Beijing: Electronic Industry Press, 1988: 12.
9 王陆瑶, 孟东, 李璐. “热效应”或“非热效应”——微波加热反应机理探讨[J]. 化学通报, 2013, 76(8): 698-703.
WangL Y, MengD, LiL. Thermal or nonthermal microwave effects—the mechanism of microwave heating[J]. Chemistry, 2013, 76(8): 698-703.
10 蒋华义. 微波对高粘高凝原油作用规律研究[D]. 成都: 西南石油学院, 2004.
JiangH Y. Study on the influence of microwave on high viscosity and high coagulation crude oil[D]. Chengdu: Southwest Petroleum University, 2004.
11 HydeA, HoriguchiM, MinamishimaN, et al. Effects of microwave irradiation on the decane-water interface in the presence of Triton X-100[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2017, 524: 178-184.
12 邓波, 庞小峰. 静磁场作用下的水的性质改变[J]. 电子科技大学学报, 2008, 37(6): 959-962.
DengB, PangX F. Static magnetic field influence on properties of water[J]. Journal of University of Electronic Science and Technology of China, 2008, 37(6): 959-962.
13 ToledoE J L, RamalhoT C, MagriotisZ M. Influence of magnetic field on physical–chemical properties of the liquid water: insights from experimental and theoretical models[J]. Journal of Molecular Structure, 2008, 888(1/2/3): 409-415.
14 RazmkhahM , MoosaviF , MosavianM T H , et al. Does electric or magnetic field affect reverse osmosis desalination?[J]. Desalination, 2018, 432: 55-63.
15 PadróJ A, SaizL, GuàrdiaE. Hydrogen bonding in liquid alcohols: a computer simulation study[J]. Journal of Molecular Structure, 1997, 416(1/2/3): 243-248.
16 AntipovaM L, PetrenkoV E. Hydrogen bond lifetime for water in classic and quantum molecular dynamics[J]. Russian Journal of Physical Chemistry A, 2013, 87(7): 1170-1174.
17 GuàrdiaE, MartíJ, PadróJ A, et al. Dynamics in hydrogen bonded liquids: water and alcohols[J]. Journal of Molecular Liquids, 2002, 96: 3-17.
18 ZhaoY L, DongK, LiuX M, et al. Structure of ionic liquids under external electric field: a molecular dynamics simulation[J]. Molecular Simulation, 2012, 38(3): 172-178.
19 RootL J, BerneB J. Effect of pressure on hydrogen bonding in glycerol: a molecular dynamics investigation[J]. Journal of Chemical Physics, 1997, 107(11): 4350-4357.
20 EgorovA V, LyubartsevA P, LaaksonenA. Molecular dynamics simulation study of glycerol-water liquid mixtures[J]. Journal of Physical Chemistry B, 2011, 115(49): 14572-14581.
21 DongH J, YangJ H, MuS J. The effect of an external electric field on the structure of liquid water using molecular dynamics simulations[J]. Chemical Physics, 1999, 244(2/3): 331-337.
22 SunW, ChenZ, HuangS Y. Molecular dynamics simulation of liquid methanol under the influence of an external electric field[J]. Fluid Phase Equilibria, 2005, 238(1): 20-25.
23 ChenC, LiW Z, SongY C, et al. Hydrogen bonding analysis of glycerol aqueous solutions: a molecular dynamics simulation study[J]. Journal of Molecular Liquids, 2009, 146(1): 23-28.
24 DashnauJ L, NucciN V, SharpK A, et al. Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures.[J]. Journal of Physical Chemistry B, 2006, 110(27): 13670-13677.
25 洪品杰, 戴树珊, 林春雷, 等. 醇-水, 醇-酸混溶介质的微波衰减特性[J]. 化学研究与应用, 1993, 5(3): 36-40.
HongP J, DaiS S, LinC L, et al. Microwave attenuation characteristics of alcohol-water, alcohol-acid miscible media[J]. Chemical Research and Application, 1993, 5(3): 36-40.
26 SaizL, PadroJ A, GuardiaE. Dynamics and hydrogen bonding in liquid ethanol[J]. Molecular Physics, 1999, 97(7): 897-905.
27 JahnD A, AkinkunmiF O, GiovambattistaN. Effects of temperature on the properties of glycerol: a computer simulation study of five different force fields[J]. Journal of Physical Chemistry B, 2014, 118(38): 11284-11294.
28 HessB, BekkerH, BerendsenH J C, et al. LINCS: a linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997, 18(12): 1463–1472.
29 NagA, ChakrabortyD, ChandraA. Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions[J]. Journal of Chemical Sciences, 2008, 120(1): 71-77.
30 EnglishN J, MacelroyJ M D. Hydrogen bonding and molecular mobility in liquid water in external electromagnetic fields[J]. Journal of Chemical Physics, 2003, 119(22): 11806-11813.
31 陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京: 化学工业出版社, 2007: 110.
ChenZ L, XuW R, TangL D. Theory and Practice of Molecular Simulation[M]. Beijing: Chemical Industry Press, 2007: 110.
[1] 彭思玉, 郑成, 毛桃嫣, 魏渊, 宋华峰. 双十八烷基四羟乙基二溴丙二铵的微波合成及其性能研究[J]. 化工学报, 2019, 70(S1): 202-210.
[2] 陈燕饶, 毛桃嫣, 郑成. 双十八烷基二羟乙基溴化铵的微波合成及性能[J]. 化工学报, 2019, 70(S1): 226-234.
[3] 秦宁, 闵清, 邵开元, 胡文祥. 间甲基苯甲脒盐酸盐的合成研究[J]. 化工学报, 2019, 70(S1): 242-247.
[4] 商辉, 丁禹, 张文慧. 微波法制备生物柴油研究进展[J]. 化工学报, 2019, 70(S1): 15-22.
[5] 曾昭文, 郑成, 毛桃嫣, 魏渊, 肖润辉, 彭思玉. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(S1): 1-14.
[6] 马密霞, 秦宁, 闵清, 胡文祥. 微波超声波联用萃取白藜芦醇及其苷的HPLC测定[J]. 化工学报, 2019, 70(S1): 124-129.
[7] 杨浩, 闫二艳. 基于束能推进的微波加热效率仿真[J]. 化工学报, 2019, 70(S1): 93-98.
[8] 刘丹彤, 郑成, 毛桃嫣. 心血管中药方剂暖心方微波提取[J]. 化工学报, 2019, 70(S1): 115-123.
[9] 曾育才, 刘小玲, 梁奇峰, 吕鉴泉. 微波促进碳酸钾催化一锅法合成2-氨基-3氰基-4-芳基-4H-苯并色烯衍生物[J]. 化工学报, 2019, 70(S1): 110-114.
[10] 王超前, 王文龙, 李哲, 孙静, 宋占龙, 赵希强, 毛岩鹏. 基于微波诱导定向加热的污泥新型热解方法能耗分析[J]. 化工学报, 2019, 70(S1): 168-176.
[11] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[12] 汪勤, 张冰剑, 何畅, 陈清林. 基于能量目标的芳烃萃取精馏溶剂评价模型[J]. 化工学报, 2019, 70(5): 1815-1822.
[13] 杜文欣, 伍联营, 张伟涛, 陈灿, 胡仰栋. 钢球在液体中振动磨损量的研究[J]. 化工学报, 2019, 70(4): 1505-1511.
[14] 杨世品, 黄振, 李丽娟, 宋健全, 叶景, 汪辉. 复杂化工过程失配子模型深度诊断与修正算法[J]. 化工学报, 2019, 70(4): 1485-1493.
[15] 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .