化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 168-176.doi: 10.11949/j.issn.0438-1157.20181404

• 能源和环境工程 • 上一篇    下一篇

基于微波诱导定向加热的污泥新型热解方法能耗分析

王超前(),王文龙(),李哲,孙静,宋占龙,赵希强,毛岩鹏   

  1. 山东大学燃煤污染物减排国家工程实验室,山东省能源碳减排技术与资源化利用重点实验室,山东 济南 250061
  • 收稿日期:2018-11-23 修回日期:2018-12-23 出版日期:2019-03-31 发布日期:2019-04-26
  • 通讯作者: 王文龙 E-mail:985577694@qq.com;wwenlong@sdu.edu.cn
  • 作者简介:<named-content content-type="corresp-name">王超前</named-content>(1988—),女,博士研究生,<email>985577694@qq.com</email>|王文龙(1977—),男,博士,教授,<email>wwenlong@sdu.edu.cn</email>
  • 基金资助:
    国家自然科学基金项目(51506116, 51576118)

Energy consumption analysis of novel pyrolysis method of sewage sludge based on microwave-induced target-oriented heating

Chaoqian WANG(),Wenlong WANG(),Zhe LI,Jing SUN,Zhanlong SONG,Xiqiang ZHAO,Yanpeng MAO   

  1. National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, Shandong Provincial Key Laboratory of Energy Carbon Reduction and Resource Utilization, Shandong University, Jinan 250061, Shandong, China
  • Received:2018-11-23 Revised:2018-12-23 Online:2019-03-31 Published:2019-04-26
  • Contact: Wenlong WANG E-mail:985577694@qq.com;wwenlong@sdu.edu.cn

摘要:

针对现有污泥热解技术耗时耗能、炭性能受限等难题,提出微波诱导协同热解的新型技术思路,即仅先用常规初级热解获得微波强化吸收的热解基体,再用微波诱导其高能位点效应,以期低能耗制备较高性能的污泥炭。对样品进行介电特性、工业分析等多种测试,在简要分析并验证该思路可行的基础上,探寻其能耗机制,以期为实际应用提供参考。结果表明,通过常规700℃热解10 min的热解基体,介电特性提高约22%,可在微波900 W中5 min升高到平均900℃;不仅提高炭性能,而且比常规700℃热解60 min节能省时达50%以上,这主要归因于对热解过程整体用时的显著缩减与微波能的高效利用。研究思路为低能耗制备高附加值污泥炭奠定工艺应用基础,有望实现污泥大规模资源化处置。

关键词: 废物处理, 热解, 辐射, 市政污泥, 微波诱导协同热解, 节能

Abstract:

There are many difficulties of current research on sewage sludge pyrolysis, such as time consuming, high energy consumption and limitation of char properties. To solve those difficulties, this paper provides a novel technical approach of microwave-induced synergistic pyrolysis. Namely without adding extra microwave absorbent, semi-pyrolytic sludge char can be obtained by pre-pyrolysis of sewage sludge itself under conventional low energy consumption; then it is used as basal body to be pyrolysed under microwave, which is based on in-situ carbonation enhancement by high-energy-site effects and heavy metal solidification via vitrification; finally, highly stable sludge char is expected to be produced with low energy consumption in the novel process. The paper tested the dielectric properties, proximate analysis, toxicity characteristic leaching procedure, specific surface area and SEM images of sewage sludge materials. By brief analysis and verification of feasibility of the novel approach, its energy consumption mechanism was focused on, which will contribute to practical application. In this experiment, semi-pyrolytic sludge char produced by pre-pyrolysis(700℃, 10 min) could increase whole dielectric properties by 22%, that was conductive to achieve average 900℃ in 5 min under microwave pyrolysis (900 W). That was helpful for improving properties of sludge char, and the novel pyrolysis process saved up to 50% than the traditional one (700℃, 60 min) . Energy saving property of the novel approach is mainly attributed to obviously shorten whole pyrolysis time and high efficiency utilization of microwave energy. This novel technical approach can complete the preparation of highly stable sludge char with low energy consumption, and will open a large-scale disposal route for sewage sludge.

Key words: waste treatment, pyrolysis, radiation, sewage sludge, microwave-induced synergistic pyrolysis, energy saving

中图分类号: 

  • X 705

表1

污泥主要传统处理处置方法的优缺点对比[5,6,7,8]"

方法(类别)优 点缺 点

厌氧消化(处理)

可减量、稳定污泥及回收沼气

污泥有机质含量低时沼气品质差、不经济,消化后的残渣中仍含有50%左右的有机质与大量病菌、重金属等需处置
填埋(处置)简单、易操作占用土地、存在有机毒物和重金属浸出风险,也没有实现价值回收
堆肥(处置)可降解污泥中的有机物,并作为农田肥料重金属会在植物中富集,通过食物链的传递而危害整个生物圈
焚烧(处置)可高效显著减量污泥并回收部分热能成本高且易形成二英、重金属飞灰等二次污染问题

表2

污泥主要炭化方法的优缺点对比[16,17,18,19,20,21,22,23,24,25,26]"

炭化方法优 点缺 点
直接炭化高温热解炭的稳定性更强,可玻璃化固化重金属耗时耗能、重金属易挥发

活化

污泥炭的孔隙结构发达,可提高吸附能力,低温热解降低制炭能耗制备过程烦琐,活化剂、酸等大量试剂使用后妥善处理困难,增加重金属浸出风险

共热解

提高污泥炭的含碳量及孔隙结构,污泥炭的重金属含量小,低温热解降低制炭能耗通过消耗大量生物质才可稀释污泥炭的重金属含量,但对减少重金属迁移的效果不明显

微波热解

可明显快速提高重金属固化的安全性及炭品质,且具备节能潜力污泥是弱吸波介质,掺混的高品质强吸波介质的分离与回收利用是难题

图1

微波诱导协同热解制炭过程"

图2

微波热点效应"

图3

污泥样品的介电与升温特性曲线"

表3

污泥样品的介电与工业分析参数"

测试参数SSBCCTXT
介电常数1.641.591.611.87
介电损耗因子0.740.870.941.34
tanδ0.450.550.580.72
固定碳含量/%7.9415.8618.1519.26

图4

污泥热解炭扫描电镜图"

表4

两种污泥炭各种表征测试结果"

样品热解时间/min产率/%

比表面积/

(m2/g)

ZnCu
污泥炭固化重金属量/(mg/kg)重金属浸出量/(mg/L)污泥炭固化重金属量/(mg/kg)重金属浸出量/(mg/L)
常规热解污泥炭6061471162.93532.16
协同热解污泥炭1554591721.07890.94

图5

热解制炭过程的能耗计算模型"

表5

半程热解污泥在不同温度状态时的过程节能率"

半程热解污泥温度状态过程总用时/min散热节能率/%总节能率/%
室温冷态15(10+5)7569.4
实际热态12(10+2)8077.8

图6

微波诱导协同热解污泥制炭过程的工艺流程"

1 VinayK T, ShangL L. Sludge: a waste or renewable source for energy and resources recovery[J]. Renewable and Sustainable Energy Reviews, 2013, 25: 708-728.
2 LiZ J, DengH, YangL, et al. Influence of potassium hydroxide activation on characteristics and environmental risk of heavy metals in chars derived from municipal sewage sludge[J]. Bioresource Technology, 2018, 256: 216-223.
3 YangG, ZhangG M, WangH C. Current state of sludge production, management, treatment and disposal in China[J]. Water Res., 2015, 78: 60-73.
4 黄月娥. 城市污泥5种重金属分布特征及其环境风险评价[D]. 淮南: 安徽理工大学, 2016.
HuangY E. Distribution characteristics and environmental risk assessment of five heavy metals in sewage sludge[D]. Huainan: AnHui University of Science and Technology, 2016.
5 AlexandrosK, AthanasiosS S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries[J]. Waste Management, 2012, 32: 1186-1195.
6 XiaoL S, LinT, WangY, et al. Comparative life cycle assessment of sludge management: a case study of Xiamen, China[J]. Journal of Cleaner Production, 2018, 192: 354-363.
7 方平, 唐子君, 钟佩怡, 等. 城市污泥焚烧渣中重金属的浸出特性[J]. 化工进展, 2017, 36(6): 2304-2310.
FangP, TangZ J, ZhongP Y, et al. A study on leaching characteristics of heavy metals in sludge incineration slag[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2304-2310.
8 于晓庆, 董滨, 何群彪, 等. 污水污泥和消化污泥热解过程中重全属迁移转化行为对比分析[J]. 净水技术, 2017, 36(12): 27-32.
YuX Q, DongB, HeQ B, et al. Comparative analysis of heavy metals migration and transformation between sewage sludge and digested sludge during pyrolysis process[J].Water Purification Technology, 2017, 36(12): 27-32.
9 JinZ Y, ChangF M, MengF L, et al. Sustainable pyrolytic sludge-char preparation on improvement of closed-loop sewage sludge treatment: characterization and combined in-situ application[J]. Chemosphere, 2017, 184: 1043-1053.
10 JorgeP F, AuroraN, AnaM, et al. Biochar from biosolids pyrolysis: a review[J]. Int. J. Environ. Res. Public Health., 2018, 15: 956.
11 AnetaM, SebastianW. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS[J]. Waste Management, 2014, 34: 174-179.
12 ChenD Z, YinL J, WangH, et al. Pyrolysis technologies for municipal solid waste: a review[J]. Waste Management, 2014, 34: 2466-2486.
13 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 广州: 中国科学院大学, 2017.
WeiS Y. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar[D]. Guangzhou: University of Chinese Academy of Sciences, 2017.
14 ChanakaW D U, AndreiV, ApostolosG, et al. Fate and distribution of heavy metals during thermal processing of sewage sludge[J]. Fuel, 2018, 226: 721-744.
15 戴亮, 任珺, 陶玲, 等. 不同热解温度下污泥基生物炭的性质及对Cd2+的吸附特性[J]. 环境工程学报, 2017, 11(7): 4029-4035.
DaiL, RenJ, TaoL, et al. Properties of sewage sludge biochar produced under different pyrolysis temperatures and its sorption capability to Cd2+[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4029-4035.
16 汤斯奇, 王经臣, JaehacK. 不同热解终温和保留时间下污泥生物质炭孔隙结构特征[J]. 北京大学学报(自然科学版), 2017, 53(5): 890-898.
TangS Q, WangJ C, JaehacK. Pore Structure characteristics of sludge biochars during pyrolysis with various pyrolysis temperatures and holding times[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(5): 890-898.
17 JinJ W, WangM Y, CaoY C, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals[J]. Bioresource Technology, 2017, 228: 218-226.
18 鲁涛, 袁浩然, 王亚琢, 等. 热解温度对污泥生物炭稳定性及养分淋溶特性影响[J]. 化工学报, 2015, 66(7): 2664-2669.
LuT, YuanH R, WangY Z, et al. Influence of pyrolysis temperature on biochar stability and leaching properties of nutrients contained in biochar[J]. CIESC Journal, 2015, 66(7): 2664-2669.
19 彭成法, 肖汀璇, 李志建. 热解温度对污泥基生物炭结构特性及对重金属吸附性能的影响[J]. 环境科学研究, 2017, 30(10): 1637-1644.
PengC F, XiaoT X, LiZ J. Effects of pyrolysis temperature on structural properties of sludge-based biochar and its adsorption for heavy metals[J]. Research of Environmental Sciences, 2017, 30(10): 1637-1644.
20 王鹤, 李芬, 张彦平, 等. 污水厂剩余污泥材料化和能源利用技术研究进展[J]. 材料导报A: 综述篇, 2016, 30(7): 119-124.
WangH, LiF, ZhangY P, et al. Research process in materialization and energy utilization of the surplus sludge of sewage treatment[J]. Mater. Rev.: Rev., 2016, 30(7): 119-124.
21 FangS W, YuZ S, LinY. A study on experimental characteristic of co-pyrolysis of municipal solid waste and paper mill sludge with additives[J]. Applied Thermal Engineering, 2017, 111: 292-300.
22 JusticeA, SusanH, MichaelC, et al. Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 642-657.
23 方琳. 微波能作用下污泥脱水和高温热解的效能与机制[D]. 哈尔滨: 哈尔滨工业大学, 2007.
FangL. Efficiency and mechanism of sewage sludge dewatering and pyrolysis under treatment of microwave energy[D]. Harbin: Harbin Institute of Technology, 2007.
24 ZhangJ, TianY, YinL L, et al. Insight into the effects of biochar as adsorbent and microwave receptor from one-step microwave pyrolysis of sewage sludge[J]. Environmental Science and Pollution Research, 2018, 25: 18424-18433.
25 ElsaA, JamesS, GrahamB, et al. Biochar produced from biosolids using a single-mode microwave: characterisation and its potential for phosphorus removal[J]. Journal of Environmental Management, 2017, 196: 119-126.
26 郭子逸, 邵敬爱, 王贤华, 等. 污泥微波热解过程重金属转化特性与风险评估[J]. 环境工程学报, 2017, 11(3): 1801-1806.
GuoZ Y, ShaoJ A, WangX H, et al. Transformation characteristic of heavy metals during microwave pyrolysis of sewage sludge and risk assessment[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1801-1806.
27 WangW L, Zhao, SunJ, et al. Quantitative measurement of energy utilization efficiency and study of influence factors in typical microwave heating process[J]. Energy, 2015, 87: 678-685.
28 WangW L, WangB, SunJ, et al. Numerical simulation of hot-spot effects in microwave heating due to existence of strong microwave-absorbing media[J]. RSC Advances, 2016, 6: 52974-52981.
29 YolandaF, AnaA, Angel MJ.. Advances in Induction and Microwave Heating of Mineral and Organic Materials// Microwave Heating Applied to Pyrolysis[M]. Chicago: InTech Publishing, 2011: 723-752.
30 王晴东. 基于多物理场的褐煤微波热解制气特性及机理研究[D]. 武汉: 武汉科技大学, 2016.
WangQ D. Microwave pyrolysis gasification characteristics and mechanism study of lignite based on the multi-physics field[D]. Wuhan: Wuhan University of Science and Technology, 2016.
31 王擎, 桓现坤, 寇震, 等. 微波场中油页岩及半焦升温特性[J]. 微波学报 , 2009, 25(1): 92-96.
WangQ, HuanX K, KouZ, et al. Temperature rising characteristic of oil shale and semi-coke under the microwave field[J]. Journal of Microwave, 2009, 25(1): 92-96.
[1] 秦宁, 闵清, 邵开元, 胡文祥. 间甲基苯甲脒盐酸盐的合成研究[J]. 化工学报, 2019, 70(S1): 242-247.
[2] 曾育才, 刘小玲, 梁奇峰, 吕鉴泉. 微波促进碳酸钾催化一锅法合成2-氨基-3氰基-4-芳基-4H-苯并色烯衍生物[J]. 化工学报, 2019, 70(S1): 110-114.
[3] 金靓婕, 白鹏, 郭翔海. 带有侧线采出回流的部分透热精馏的节能优化[J]. 化工学报, 2019, 70(5): 1804-1814.
[4] 洪迪昆, 操政, 杨昌敏, 刘亮, 郭欣. 钙催化苯酚反应的分子动力学模拟[J]. 化工学报, 2019, 70(5): 1788-1794.
[5] 魏砾宏, 郭良振, 蒋进元, 刘美佳, 杨天华. Fe2O3对甘氨酸热解特性及氮转化的影响[J]. 化工学报, 2019, 70(5): 1942-1950.
[6] 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
[7] 梁文胜, 刘江涛, 赵月, 黄伟, 左志军. NiO和Ni催化剂对苯甲酸热解机理的理论计算[J]. 化工学报, 2019, 70(4): 1429-1435.
[8] 郭玉梅, 曹丽琼, 郭彦霞, 燕可洲. 煤矸石和赤泥协同提取氧化铝过程矿相转变研究[J]. 化工学报, 2019, 70(4): 1542-1549.
[9] 苏银皎, 刘轩, 李丽锋, 李晓航, 姜平, 滕阳, 张锴. 三类煤阶煤中汞的赋存形态分布特征[J]. 化工学报, 2019, 70(4): 1559-1566.
[10] 李学玲, 刘兴元, 赵锋, 张建强. 用DIOSO从水溶液中萃取镉的研究[J]. 化工学报, 2019, 70(4): 1464-1471.
[11] 王超, 李长明, 皇甫林, 李萍, 杨运泉, 高士秋, 余剑, 许光文. 赤泥催化剂的制备及其对模拟烟气中微量氨的脱除性能[J]. 化工学报, 2019, 70(3): 1056-1064.
[12] 汤健, 乔俊飞. 基于选择性集成核学习算法的固废焚烧过程二噁英排放浓度软测量[J]. 化工学报, 2019, 70(2): 696-706.
[13] 王婵娜, 刘令, 王慧华, 屈天鹏, 田俊, 王德永, 康振辉. Co-Fe-Pd纳米粒子的可控制备及其氧还原催化性能[J]. 化工学报, 2019, 70(1): 319-326.
[14] 张亮, 史忠科. 相变储能技术在汽车节能中的应用进展[J]. 化工学报, 2018, 69(S2): 17-25.
[15] 郑莉芳, 王兆中, 谢亚杰, 岳丽娜, 王立. γ辐照作用下GFRP热分解动力学研究[J]. 化工学报, 2018, 69(S1): 161-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .