化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1429-1435.doi: 10.11949/j.issn.0438-1157.20181396

• 催化、动力学与反应器 • 上一篇    下一篇

NiO和Ni催化剂对苯甲酸热解机理的理论计算

梁文胜(),刘江涛,赵月,黄伟,左志军()   

  1. 太原理工大学煤科学与技术教育部与山西省重点实验室,山西 太原 030024
  • 收稿日期:2018-11-22 修回日期:2019-01-08 出版日期:2019-04-05 发布日期:2019-01-09
  • 通讯作者: 左志军 E-mail:13663434400@163.com;zuozhijun@tyut.edu.cn
  • 作者简介:<named-content content-type="corresp-name">梁文胜</named-content>(1993—),男,硕士研究生,<email>13663434400@163.com</email>|左志军(1981—),男,博士,教授,<email>zuozhijun@tyut.edu.cn</email>
  • 基金资助:
    国家自然科学基金项目(21776197,21776195);山西省优秀青年基金项目(201701D211003)

Theoretical calculation of effect of NiO and Ni catalysts for benzoic acid pyrolysis

Wensheng LIANG(),Jiangtao LIU,Yue ZHAO,Wei HUANG,Zhijun ZUO()   

  1. Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Received:2018-11-22 Revised:2019-01-08 Online:2019-04-05 Published:2019-01-09
  • Contact: Zhijun ZUO E-mail:13663434400@163.com;zuozhijun@tyut.edu.cn

摘要:

在煤热解过程中加入特定的催化剂可以改变煤结构中相关化学键的结合能,使热解在相对温和的条件下进行,促使更多的小分子从煤结构上解离成为产物释放,并调节产物的产率和组成,提高转化率及产物的品质。由于煤化学结构的复杂性,从分子水平研究煤的催化热解行为非常困难。基于此,以煤的催化热解为背景,采用煤模型化合物,借助密度泛函理论(DFT),选取苯甲酸(C6H5COOH)为煤基模型,以NiO和Ni为催化剂,研究催化热解过程中催化剂价态改变对煤催化剂热解的作用。DFT结果显示,苯甲酸热解的主要路径为:C6H5COOH CO2+C6H6和C6H5COOH C6H6COO CO2+C6H6;在NiO上的分解路径为:C6H5COOH(g) *C6H5COO + *H *CO2 + *C6H6 CO2(g) + C6H6(g) ;在金属Ni上的分解路径为:C6H5COOH(g) *C6H5COOH *C6H5COO + *H *CO2 + *C6H6 CO2(g) + C6H6(g) 。Ni基催化剂的加入能够促进C6H5COOH的热解,同时改变了苯甲酸的热解路径,但是产物不变。当NiO被还原为金属Ni时,催化效果减弱。

关键词: 煤, 催化热解, 还原, 苯甲酸, 催化剂, 理论计算, 模型

Abstract:

The catalyst alters the binding energy of some chemical bonds in coal. It makes the conditions of pyrolysis milder, and adjusts the yield and composition of the product by promoting the micromolecules dissociation from coal. As a result, the conversion and the quality of product are increased. However, the chemical structure of coal is very complex, the catalytic pyrolysis mechanisms in coal are very difficult to study at the molecular level. Therefore, benzoic acid (C6H5COOH) is selected as the coal-based model compound to investigate the effect of valence states change of catalysts during catalytic pyrolysis by using density functional theory (DFT) method, in which NiO and Ni are selected as catalysts. The results showed that there are two reaction pathways for C6H5COOH pyrolysis. One is CO2 and C6H6 are directly formed from C6H5COOH. The other is that C6H6COO is produced from H migration of C6H5COOH, then, C6H6 and CO2 are obtained from C6H6COO decomposition. On NiO(100), the favorable reaction pathway is that *C6H5COO and *H are formed from C6H5COOH dissociative adsorption. Finally, *CO2 and *C6H6 are produced from *C6H5COO decomposition with the assistance of *H. On Ni(111), the favorable reaction pathway is that *C6H5COO and *H are formation from *C6H5COOH decomposition, which C6H5COOH is nondissociative adsorption. Eventually, *CO2 and *C6H6 are obtained. In general, Ni-based catalyst can promote C6H5COOH pyrolysis and change the pyrolysis pathways of benzoic acid, but the products are still the same. The catalytic effect decreases when NiO is reduced to metallic Ni.

Key words: coal, catalytic pyrolysis, reduction, benzoic acid, catalyst, theoretical calculation, model

中图分类号: 

  • O 643.36

图1

NiO(100)和Ni(111)的主视图和侧视图"

图2

三种反应路径"

图3

苯甲酸热解势能图"

图4

苯甲酸热解过程中的初态、过渡态以及末态构型"

图5

NiO(100)面上C6H5COOH热解过程中各中间体最稳定吸附构型"

表1

NiO(100)和Ni(111)面上各中间体吸附能及其到吸附位点的键长"

Catalyst Specie Site E ads/eV Bond length/nm
NiO(100) C6H5COO Nibri -1.80 d O—Ni =0.1980
C6H5 Otop -1.10 d C—O =0.1386
H Otop -1.20 d H—O =0.0981
C6H6 no bond -0.01
CO2 Nitop,Otop -0.05 d C—O=0.1458,d O—Ni=0.2162
Ni (111) C6H5COOH top -0.18 d O—Ni =0.1987
C6H6COO bridge -2.11 d O—Ni =0.1956
C6H5COO bridge -3.08 d O—Ni=0.1949
C6H5 top -2.88 d O—Ni =0.1871
H fcc -2.35 d H—Ni =0.1709
C6H6 no bond -0.05
CO2 no bond -0.02

图6

NiO(100)上苯甲酸热解势能图"

图7

C6H5COOH在NiO(100)面上热解过程中的各基元反应的初态、过渡态以及末态构型"

图8

Ni(111)面上C6H5COOH热解过程中各中间体最稳定吸附构型"

图9

Ni(111)上苯甲酸热解势能图"

图10

C6H5COOH在Ni(111)面上热解过程中的各基元反应的初态、过渡态以及末态构型"

1 Han J , Wang X , Yue J , et al . Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Processing Technology, 2014, 122: 98-106.
2 Rombi E , Cutrufello M G , Atzori L , et al . CO methanation on Ni-Ce mixed oxides prepared by hard template method[J]. Applied Catalysis A: General, 2016, 515: 144-153.
3 Wang S G , Cao D B , Li Y W , et al . CO2 reforming of CH4 on Ni (111): a density functional theory calculation[J]. The Journal of Physical Chemistry B, 2006, 110(20): 9976-9983.
4 Wang S G , Liao X Y , Hu J , et al . Kinetic aspect of CO2 reforming of CH4 on Ni(111): a density functional theory calculation[J]. Surface Science, 2007, 601(5): 1271-1284.
5 Solomon P R , Serio M A , Carangelo R M , et al . Analysis of the Argonne premium coal samples by thermogravimetric Fourier transform infrared spectroscopy[J]. Energy & Fuels, 1990, 4(3): 319-333.
6 Choe S J , Kang H J , Park D H , et al . Adsorption and dissociation reaction of carbon dioxide on Ni (1 1 1) surface: molecular orbital study[J]. Applied Surface Science, 2001, 181(3/4): 265-276.
7 Kresse G , Furthmüller J . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169.
8 Kresse G , Furthmüller J . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.
9 Blöchl P E . Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
10 Perdew J P , Burke K , Ernzerhof M . Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865.
11 Kresse G , Joubert D . From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758.
12 Sheppard D , Xiao P , Chemelewski W , et al . A generalized solid-state nudged elastic band method[J]. J. Chem. Phys., 2012, 136(7): 074103.
13 Kong L , Li G , Jin L , et al . Pyrolysis behaviors of two coal-related model compounds on a fixed-bed reactor[J]. Fuel Processing Technology, 2015, 129: 113-119.
14 Li L , Fan H , Hu H . A theoretical study on bond dissociation enthalpies of coal based model compounds[J]. Fuel, 2015, 153: 70-77.
15 Wang M F , Zuo Z J , Ren R P , et al . Theoretical study on catalytic pyrolysis of benzoic acid as a coal-based model compound[J]. Energy & Fuels, 2016, 30(4): 2833-2840.
16 凌丽霞, 赵俐娟, 章日光, 等 . 苯甲酸和苯甲醛热解机理的量子化学研究[J]. 化工学报, 2009, 60(5): 1224-1230.
Ling L X , Zhao L J , Zhang R G , et al . Pyrolysis mechanisms of benzoic acid and benzaldehyde based on quantum chemistry[J]. CIESC Journal, 2009, 60(5): 1224-1230.
17 Xu B , Lu W , Sun Z , et al . High-quality oil and gas from pyrolysis of Powder River Basin coal catalyzed by an environmentally-friendly, inexpensive composite iron-sodium catalysts[J]. Fuel Processing Technology, 2017, 167: 334-344.
18 Rodriguez J A , Hanson J C , Frenkel A I , et al . Experimental and theoretical studies on the reaction of H2 with NiO: role of O vacancies and mechanism for oxide reduction[J]. Journal of the American Chemical Society, 2002, 124(2): 346-354.
19 Selcuk S , Selloni A . DFT+U study of the surface structure and stability of Co3O4(110): dependence on U[J]. The Journal of Physical Chemistry C, 2015, 119(18): 9973-9979.
20 Wang L , Maxisch T , Ceder G . Oxidation energies of transition metal oxides with in the GGA+U framework[J]. Physical Review B, 2006, 73(19): 195107.
21 Dudarev S L , Botton G A , Savrasov S Y , et al . Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study[J]. Physical Review B, 1998, 57(3): 1505.
22 Hüfner S . Electronic structure of NiO and related 3d-transition-metal compounds[J]. Advances in Physics, 1994, 43(2): 183-356.
23 Yan M , Chen S P , Mitchell T E , et al . Atomistic studies of energies and structures of (hk0) surfaces in NiO[J]. Philosophical Magazine A, 1995, 72(1): 121-138.
24 Li L , Kanai Y . Antiferromagnetic structures and electronic energy levels at reconstructed NiO(111) surfaces: ADFT+U study[J]. Physical Review B, 2015, 91(23): 235304.
25 Zeng Y , Ma H , Zhang H , et al . Ni-Ce-Al composite oxide catalysts synthesized by solution combustion method: enhanced catalytic activity for CO methanation[J]. Fuel, 2015, 162: 16-22.
26 Kresse G , Hafner J . Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1): 558-561.
27 Rohrbach A , Hafner J , Kresse G . Molecular adsorption on the surface of strongly correlated transition-metal oxides: a case study for CO/NiO(100)[J]. Physical Review B, 2004, 69(7): 075413.
28 Wang B , Nisar J , Ahuja R . Molecular simulation for gas adsorption at NiO (100) surface[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5691-5697.
29 Eskay T P , Britt P F , Buchanan III A C . Pyrolysis of coal model compounds containing aromatic carboxylic acids: the role of carboxylic acids in cross-linking reactions in low-rank coal[R]. Oak Ridge National Lab., TN (United States), 1997.
30 Eskay T P , Britt P F , Buchanan A C . Does decarboxylation lead to cross-linking in low-rank coals?[J]. Energy & Fuels, 1996, 10(6): 1257-1261.
31 Manion J A , McMillen D F , Malhotra R . Decarboxylation and coupling reactions of aromatic acids under coal-liquefaction conditions[J]. Energy & Fuels, 1996, 10(3): 776-788.
[1] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[2] 闫磊, 陈思宇, 肖美良子, 丁伟. 煤制烯烃基长链烷基二甲苯合成研究[J]. 化工学报, 2019, 70(S1): 235-241.
[3] 商辉, 丁禹, 张文慧. 微波法制备生物柴油研究进展[J]. 化工学报, 2019, 70(S1): 15-22.
[4] 孟繁锐, 李伯阳, 李先春, 邱爽. K2CO3对兰炭催化气化特性的影响[J]. 化工学报, 2019, 70(S1): 99-109.
[5] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[6] 汪勤, 张冰剑, 何畅, 陈清林. 基于能量目标的芳烃萃取精馏溶剂评价模型[J]. 化工学报, 2019, 70(5): 1815-1822.
[7] 马双忱, 范紫瑄, 万忠诚, 陈嘉宁, 张净瑞, 马采妮. 高盐水条件下亚硫酸盐氧化特性实验研究[J]. 化工学报, 2019, 70(5): 1964-1972.
[8] 武永健, 罗春欢, 魏琳, 朱探金, 苏庆泉. 基于化学链燃烧的转炉放散煤气利用研究[J]. 化工学报, 2019, 70(5): 1923-1931.
[9] 韩健, 刘新华, 何京东, 李虹嶙, 张楠. 民用解耦燃煤炉中的NO x 和CO同时减排[J]. 化工学报, 2019, 70(5): 1991-1998.
[10] 熊黠, 刘作华, 谷德银, 邱发成, 王靓, 陶长元, 王运东. 刚柔组合桨强化粉煤灰酸浸搅拌槽内固液混沌混合[J]. 化工学报, 2019, 70(5): 1693-1701.
[11] 闫景春, 沈来宏, 蒋守席, 葛晖骏. 高钠煤化学链燃烧特性及煤焦气化反应动力学研究[J]. 化工学报, 2019, 70(5): 1913-1922.
[12] 王鑫博, 张延平, 李秀萍, 赵荣祥. EMIES/nC9H10O2基低共熔溶剂的制备及其氧化脱硫活性的研究[J]. 化工学报, 2019, 70(4): 1567-1574.
[13] 梁倩卿, 马学虎, 王凯, 春江, 郝婷婷, 兰忠, 王亚雄. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281.
[14] 郭玉梅, 曹丽琼, 郭彦霞, 燕可洲. 煤矸石和赤泥协同提取氧化铝过程矿相转变研究[J]. 化工学报, 2019, 70(4): 1542-1549.
[15] 苏银皎, 刘轩, 李丽锋, 李晓航, 姜平, 滕阳, 张锴. 三类煤阶煤中汞的赋存形态分布特征[J]. 化工学报, 2019, 70(4): 1559-1566.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .