化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1913-1922.doi: 10.11949/j.issn.0438-1157.20181394

• 能源和环境工程 • 上一篇    下一篇

高钠煤化学链燃烧特性及煤焦气化反应动力学研究

闫景春(),沈来宏(),蒋守席,葛晖骏   

  1. 能源热转换及过程测控教育部重点实验室(东南大学),能源与环境学院,江苏 南京 210096
  • 收稿日期:2018-11-22 修回日期:2018-12-18 出版日期:2019-05-05 发布日期:2018-12-24
  • 通讯作者: 沈来宏 E-mail:nick_vujicic@163.com;lhshen@seu.edu.cn
  • 作者简介:<named-content content-type="corresp-name">闫景春</named-content>(1993—),男,博士研究生,<email>nick_vujicic@163.com</email>|沈来宏(1965—),男,教授,<email>lhshen@seu.edu.cn</email>
  • 基金资助:
    国家重点研发计划项目(2018YFB0605404,51761135119)

Chemical looping combustion of high-sodium coal and gasification kinetics of coal char

Jingchun YAN(),Laihong SHEN(),Shouxi JIANG,Huijun GE   

  1. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2018-11-22 Revised:2018-12-18 Online:2019-05-05 Published:2018-12-24
  • Contact: Laihong SHEN E-mail:nick_vujicic@163.com;lhshen@seu.edu.cn

摘要:

采用连续提取法对新疆准东高钠煤进行萃取处理,制备含有不同存在形式钠元素的准东煤样品,在小型流化床上考察了水溶性钠、醋酸铵溶性钠和稀盐酸溶性钠对于准东煤化学链燃烧特性的影响。结果表明,去除水溶性钠后准东煤化学链燃烧产物中含碳气体相对浓度显著提高,相同时刻碳转化率明显提高。而经过醋酸铵和稀盐酸处理后的准东煤相比未处理的准东煤,其化学链燃烧反应性能显著降低。对四种不同处理程度准东煤焦的等温气化反应进行动力学分析表明,WW-ZDJ与水蒸气的气化反应的活化能最小,HAW-ZDJ的气化反应活化能最大。水溶性钠对于准东煤化学链燃烧过程具有抑制作用,而醋酸铵和稀盐酸溶性的钠在准东煤的化学链燃烧过程中促进作用显著。

关键词: 高钠煤, 化学链燃烧, 连续提取法, 反应动力学

Abstract:

The continuous extraction method was used to extract the Zhundong high-sodium coal from Xinjiang, and the Zhundong coal samples containing different forms of sodium were prepared. The water-soluble sodium, ammonium acetate-soluble sodium and dilute hydrochloric acid-soluble sodium were investigated on a small fluidized bed. The results showed that the concentrations of carbonaceous gases and carbon conversion efficiency were significantly improved for water-washed ZD (WW-ZD) compared with untreated ZD. However, poor reaction properties of ammonium acetate washed ZD (AAW-ZD) and hydrochloric acid washed ZD (HAW-ZD) were obtained during a CLC process. The kinetics analysis on the isothermal gasification of ZD char with different extraction level was also investigated. The results showed that the activation energy of WW-ZD-H2O was minimal while the activation energy of HAW-ZD-H2O was maximum. It indicated that the H2O-soluble sodium plays a prohibitive role during the CLC of ZD, while the CH3COONH4-soluble sodium and HCl-soluble sodium have a distinct promotion effect on CLC combustion performance of ZD.

Key words: high-sodium coal, chemical looping combustion, sequential extraction method, reaction kinetics

中图分类号: 

  • TQ 541

图1

基于天然铁矿石的煤化学链燃烧过程示意图"

表1

天然铁矿石载氧体的化学组成"

Compositions Contents
Fe2O3 83.25
SiO2 7.06
Al2O3 5.33
CaO 0.23
P2O5 0.29
TiO2 0.09
K2O 0.03
SO3 0.25
others 3.47

表2

准东煤的工业分析和元素分析"

工业分析/%(mass, ad) 元素分析/%(mass, ad)
M V FC A C H O N S
14.58 28.05 53.03 6.34 64.18 4.302 9.751 0.50 0.347

表3

准东煤灰的成分组成"

CaO SiO2 SO3 Fe2O3 Al2O3 Na2O MgO TiO2 K2O Others
21.55 16.56 13.99 14.05 9.88 9.22 5.75 1.75 0.51 6.74

图2

连续提取法流程图"

图3

制焦固定床反应器"

表4

四种煤焦的元素分析"

样品 元素分析 /%(mass, ad)
C H N S
ZDJ 81.06 3.147 0.76 1.613
WW-ZDJ 80.43 2.977 0.96 1.071
AAW-ZDJ 82.28 3.403 0.41 1.719
HAW-ZDJ 79.71 2.876 1.01 1.48

图4

单批次流化床化学链燃烧反应装置示意图"

表5

准东煤中钠的含量"

Sample Water-soluble HAc-soluble HCl-soluble Insoluble Total
ZD

1350

(58.70)

359

(15.61)

168

(7.30)

423

(18.39)

2300

(100)

图5

分别以未处理准东煤(a)、水洗后准东煤(b)、醋酸铵洗后准东煤(c)和稀盐酸洗后准东煤(d)为燃料,水蒸气为气化介质,反应温度为900℃时的相对气体浓度"

图6

900℃下分别以ZD、WW-ZD、AAW-ZD和HAW-ZD为燃料时的碳转化率随时间的变化"

表6

反应动力学模型表达式及其相关性系数"

反应模型 积分形式 G α 微分形式 f α 相关系数R
ZDJ WW-ZDJ AAW-ZDJ HAW-ZDJ
一维扩散 α 2 1 2 α 0.9473 0.9670 0.9940 0.9599
二维扩散(柱对称) α + 1 + α l n 1 - α - 1 l n 1 - α 0.9644 0.9721 0.9930 0.9564
三维扩散(球对称) 1 - 1 - α 1 3 2 3 1 - α 1 3 2 1 - α 1 3 - 1 0.9764 0.9720 0.9883 0.9427
随机核化(n=1) - l n 1 - α 1 - α 0.9752 0.9682 0.9940 0.9689
随机核化(n=2) - l n 1 - α 1 2 2 1 - α - l n 1 - α 1 2 0.9739 0.9606 0.9826 0.9726
随机核化(n=3) - l n 1 - α 1 3 3 1 - α - l n 1 - α 2 3 0.9722 0.9568 0.9720 0.9673
收缩核模型(柱对称) 1 - 1 - α 1 2 2 1 - α 1 2 0.9701 0.9703 0.9894 0.9713
收缩核模型(球对称) 1 - 1 - α 1 3 3 1 - α 2 3 0.9820 0.9876 0.9994 0.9990

图7

不同温度下ZDJ、WW-ZDJ、AAW-ZDJ和HAW-ZDJ的碳转化率随时间的变化"

图8

球对称收缩核模型的拟合结果"

图9

煤焦气化速率与温度的拟合关系"

表7

煤焦气化的动力学参数"

Sample E/(kJ/mol) A×10-4/min R 2
ZDJ 146.98 11.30 0.982
WW-ZDJ 104.68 0.11 0.988
AAW-ZDJ 156.45 27.32 0.999
HAW-ZDJ 204.66 1266.05 0.999
1 Kavouridis K , Koukouzas N . Coal and sustainable energy supply challenges and barriers[J]. Energy Policy, 2008, 36(2): 693-703.
2 International Energy Agency . World Energy Outlook 2016[M]. Paris Google Scholar, 2016.
3 Ye D P , Agnew J B , Zhang D K . Gasification of a South Australian low-rank coal with carbon dioxide and steam: kinetics and reactivity studies[J]. Fuel, 1998, 77(11): 1209-1219.
4 Zhang D K , Agnew J B , Manzoori A R . Fluid bed gasification of Australian low-rank coal[C]//Proceedings of the Japan-Australia Joint Technical Meeting on Coal. Adelaide, Australia, 1995: 6-7.
5 兰泽全 . 煤和黑液水煤浆沾污结渣机理及灰沉积动态特性研究[D]. 杭州: 浙江大学, 2004.
Lan Z Q . Black liquor coal water slurry’s combustion characteristics and fouling/slagging performance[D]. Hangzhou: Zhejiang University, 2004.
6 周永刚, 薛志亮, 陈坚强, 等 . 高钠煤掺烧对某 660MW 机组锅炉炉膛结渣影响的测量[J]. 热力发电, 2017, 46(7): 38-45.
Zhou Y G , Xue Z L , Chen J Q , et al . Influence of cofiring high sodium coal on slagging in furnace of a 660 MW unit ultra-supercritical boiler[J]. Thermal Power Generation,2017, 46(7): 38-45.
7 Wang L , Hustad J E , Ø Skreiberg , et al . A critical review on additives to reduce ash related operation problems in biomass combustion applications[J]. Energy Procedia, 2012, 20: 20-29.
8 沈铭科, 邱坤赞, 黄镇宇, 等 . 准东煤掺烧高岭土对固钠率及灰熔融特性影响研究[J]. 燃料化学学报, 2015, 43(9): 1044-1051.
Shen M K , Qiu K Z , Huang Z Y , et al . Influence of kaolin on sodium retention and ash fusion characteristic during combustion of Zhundong coal[J]. J. Fuel Chem. Technol., 2015, 43(9): 1044-1051.
9 Lewis W K , Gilliland E R . Production of pure carbon dioxide: US 2665972 [P]. 1954.
10 Richter H , Knoche K . Reversibility of combustion processes[J]. ACS Symp. Ser., 1983, 235: 71-86.
11 Ishida M , Jin H . A new advanced power-generation system using chemical-looping combustion[J]. Energy, 1994, 19(4): 415-422.
12 Song T , Shen L . Review of reactor for chemical looping combustion of solid fuels[J]. International Journal of Greenhouse Gas Control, 2018, 76: 92-110.
13 Yan J , Shen L , Ou Z , et al . Enhancing the performance of iron ore by introducing K and Na ions from biomass ashes in a CLC process[J]. Energy, 2019, 167: 168-180.
14 Gu H , Shen L , Zhang S , et al . Enhanced fuel conversion by staging oxidization in a continuous chemical looping reactor based on iron ore oxygen carrier[J]. Chemical Engineering Journal, 2018, 334: 829-836.
15 葛晖骏, 沈来宏, 顾海明, 等 . 天然铁矿石为载氧体的准东煤化学链燃烧特性[J]. 燃料化学学报, 2016, 44(2): 184-191.
Ge H J , Shen L H , Gu H M , et al . Characteristics of Zhundong coal in chemical looping combustion with natural hematite as oxygen carrier[J]. J. Fuel Chem. Technol., 2016, 44(2): 184-191.
16 Cuvilas C A , Yang W . Spruce pretreatment for thermal application: water, alkaline, and diluted acid hydrolysis[J]. Energy & Fuels, 2012, 26(10): 6426-6431.
17 Zhang J , Han C L , Yan Z , et al . The varying characterization of alkali metals (Na, K) from coal during the initial stage of coal combustion[J]. Energy & Fuels, 2001, 15(4): 786-793.
18 Sugawara K , Enda Y , Inoue H , et al . Dynamic behavior of trace elements during pyrolysis of coals[J]. Fuel, 2002, 81(11/12): 1439-1443.
19 Marek E J , Zheng Y , Scott S A . Enhancement of char gasification in CO2 during chemical looping combustion[J]. Chemical Engineering Journal, 2018, 354: 137-148.
20 Abad A , de Las Obras-Loscertales M , García-Labiano F , et al . In situ gasification chemical-looping combustion of coal using limestone as oxygen carrier precursor and sulphur sorbent[J]. Chemical Engineering Journal, 2017, 310: 226-239.
21 Yan J , Shen L , Jiang S , et al . Combustion performance of sewage sludge in a novel CLC system with a two-stage fuel reactor[J]. Energy & Fuels, 2017, 31(11): 12570-12581.
22 Wei X , Huang J , Liu T , et al . Transformation of alkali metals during pyrolysis and gasification of a lignite[J]. Energy & Fuels, 2008, 22(3): 1840-1844.
23 Gu H , Shen L , Zhong Z , et al . Interaction between biomass ash and iron ore oxygen carrier during chemical looping combustion[J]. Chemical Engineering Journal, 2015, 277: 70-78.
24 Zhang S , Shen L , Xiao J , et al . Effects of alkali and transition metals loaded on iron ore on chemical looping combustion with coal[C]//Proceedings of the 9th China–Korea Workshop on Clean Energy Technology. Huangshan, China, 2012.
25 梁秀俊, 阎维平 . O2/CO2 气氛下煤焦燃烧反应动力学特性试验研究[J]. 华东电力, 2009, (12): 2104-2018.
Liang X J , Yan W P . Experimental study of kinetics of coal char combustion characteristics under mixed O2/CO2 atmosphere[J]. East China Electric Power, 2009, (12): 2104-2018.
26 安国银, 米翠丽 . 几种恒定高温下混煤燃烧反应动力学模型对比[J]. 热力发电, 2016, (5): 9-15.
An G Y , Mi C L . Comparative study on several combustion dynamic models of coal blends at constant high temperature[J]. Thermal Power Generation, 2016, (5): 9-15.
27 Smith I W . The combustion rates of coal chars: a review[J]. Symposium (International) on Combustion, 1982, 19(1): 1045-1065.
28 任轶舟, 王亦飞, 朱龙雏, 等 . 高温煤焦气化反应的 Langmuir-Hinshelwood 动力学模型[J]. 化工学报, 2014, 65(10): 3906-3915.
Ren Y Z , Wang Y F , Zhu L C , et al . Langmuir-Hinshelwood kinetic model of high temperature coal char gasification reaction[J]. CIESC Journal, 2014, 65(10): 3906-3915.
[1] 尚志新, 张香兰. γ-巯丙基三乙氧基硅烷水解程度对纳米二氧化硅接枝机理影响的DFT研究[J]. 化工学报, 2019, 70(5): 1663-1673.
[2] 武永健, 罗春欢, 魏琳, 朱探金, 苏庆泉. 基于化学链燃烧的转炉放散煤气利用研究[J]. 化工学报, 2019, 70(5): 1923-1931.
[3] 张玉玲, 张利平, 王倩, 李旭东, 刘晓冬, 张敬红. 循环冷却系统污垢中无机磷提取方法优化[J]. 化工学报, 2019, 70(3): 1083-1088.
[4] 李德生, 张超, 邓时海, 胡智丰, 李金龙, 刘元辉. 基于铁基质高效催化还原污水中硝酸盐氮的实验研究[J]. 化工学报, 2019, 70(3): 1065-1074.
[5] 薛永飞, 王雅琳, 孙备, 李钱钟, 孙家舟. 基于改进状态转移算法的串级平推流反应器动力学参数估计[J]. 化工学报, 2019, 70(2): 607-616.
[6] 丁炯, 陈琪, 许启跃, 杨遂军, 叶树亮. 融合C80数据的绝热加速量热法热惯量因子修正[J]. 化工学报, 2019, 70(1): 417-424.
[7] 薛超, 毛岩鹏, 王文龙, 宋占龙, 赵希强, 孙静, 王延相. 高压下微波催化湿式氧化技术降解苯酚类废水[J]. 化工学报, 2018, 69(S2): 210-217.
[8] 殷上轶, 宋涛. CO2气氛下准东煤化学链燃烧特性研究[J]. 化工学报, 2018, 69(9): 3954-3964.
[9] 宋睿, 金光远, 崔政伟, 宋春芳, 陈海英. 酯交换反应体系混合物料的介电特性[J]. 化工学报, 2018, 69(8): 3670-3677.
[10] 王子铭, 陈亮, 岳爽, 王春波. 同时煅烧硫化反应中石灰石微观孔结构演变特性[J]. 化工学报, 2018, 69(5): 2149-2157.
[11] 张志丰, 王亦飞, 朱龙雏, 李季林, 王辅臣, 于广锁. 基于铁基载氧体的无烟煤化学链燃烧过程中硫分布特性[J]. 化工学报, 2018, 69(4): 1578-1585.
[12] 倪卓, 林煜豪, 黄苇颖, 林丽蓉. 环氧树脂微胶囊合成及其反应动力学[J]. 化工学报, 2018, 69(4): 1790-1798.
[13] 张健, 黄邦印, 隋志军, 周兴贵, 袁渭康. 不同Pd/Ag配比Pd-Ag/Al2O3催化乙炔加氢微观反应动力学分析[J]. 化工学报, 2018, 69(2): 674-681.
[14] 沈天绪, 张将, 沈来宏. CO2气氛下煤与蓝藻共气化的行为演变特性[J]. 化工学报, 2018, 69(12): 5256-5265.
[15] 黄凯, 郑征, 胡激江, 冯连芳, 李伯耿. 丙烯/1-丁烯聚合物合金的单体组成切换法制备:动力学及聚合器模型[J]. 化工学报, 2018, 69(11): 4693-4701.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .