化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 115-123.doi: 10.11949/j.issn.0438-1157.20181392

• 分离工程 • 上一篇    下一篇

心血管中药方剂暖心方微波提取

刘丹彤1(),郑成1,2(),毛桃嫣1   

  1. 1. 广州大学化学化工学院,广东 广州 510006
    2. 广州大学精细化工研究所,广东 广州 510006
  • 收稿日期:2018-11-21 修回日期:2018-11-26 出版日期:2019-03-31 发布日期:2019-04-26
  • 通讯作者: 郑成 E-mail:710250528@qq.com;zhengcheng5512@163.com
  • 作者简介:<named-content content-type="corresp-name">刘丹彤</named-content>(1994—),女,硕士研究生,<email>710250528@qq.com</email>|郑成(1955—),男,博士,教授,<email>zhengcheng5512@163.com</email>
  • 基金资助:
    国家自然科学基金项目(21878058)

Microwave extraction of cardiovascular Chinese medicine formula warming heart

Dantong LIU1(),Cheng ZHENG1,2(),Taoyan MAO1   

  1. 1. College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, Guangdong, China
    2. Institute of Fine Chemical Engineering, Guangzhou University, Guangzhou 510006, Guangdong, China
  • Received:2018-11-21 Revised:2018-11-26 Online:2019-03-31 Published:2019-04-26
  • Contact: Cheng ZHENG E-mail:710250528@qq.com;zhengcheng5512@163.com

摘要:

因煎煮法等传统萃取方法不适用于提取热稳定性低的成分、萃取率不高,且目前研究主要集中于对单一药材的提取,故本研究使用微波提取技术提取中药复方(暖心方)中的有效成分;采用HPLC技术对提取液中有效成分含量进行分析;采用单因素实验法探究微波功率、萃取时间、提取次数三个因素对提取工艺的影响;此外,通过SEM对细胞破壁情况分析,了解其微波提取机理。实验结果显示,微波提取有效成分的最佳提取条件为:微波功率1200 W、萃取时间40 min、提取次数1次。与传统加热萃取法相比,微波辅助萃取技术能明显地缩短萃取时间,实现了节能高效。微波辐射因能深入并作用于中药材内部,使细胞壁破损,更好地将中药材中的有效成分析出。

关键词: 微波, 萃取, 药物, 暖心方, SEM, 机理

Abstract:

Related researches show that traditional extraction methods, like decoction, are not suitable for extracting components with low thermal stability and the extraction rates are not high. At the same time, the current researches focus on the extraction of single herbs. Thus, in this paper, the microwave extraction technique was used to extract the active components in the warm-heart, a traditional Chinese medicine compound. The HPLC method was used to analyze the content of active ingredients in the extract. The factors influencing the extraction process, which is microwave power, extraction time and the number of times of extraction respectively, were investigated by single factor experiment. In addition, the cell wall breaking condition was analyzed by SEM to understand its microwave extraction mechanism. The experimental results showed that the optimal extraction conditions of microwave extraction active components were: microwave power 1200 W, extraction time 40 min, extraction times 1. Compared with the traditional heating extraction method, the microwave-assisted extraction technology could significantly shorten the extraction time and achieve energy saving and high efficiency. That was because microwave radiation could penetrate the inside of Chinese herbal medicines to break the cell wall and extract the effective formation of Chinese herbal medicines more efficiently.

Key words: microwave, extraction, pharmaceuticals, warm-heart, scanning electron microscopy, mechanism

中图分类号: 

  • R 331

图1

微波功率对提取液中有效成分浓度的影响"

图2

萃取时间对提取液中有效成分浓度的影响"

图3

提取次数对提取液中有效成分浓度的影响"

表1

不同萃取方法的比较"

萃取方法萃取时间/ min有效成分浓度/(μg/ml)
传统加热萃取法402.7
微波法(1000 W)83.4

图4

微波辅助萃取对附子细胞微观结构的影响"

图5

微波辅助萃取对红参片细胞微观结构的影响"

图6

微波辅助萃取对薏仁细胞微观结构的影响"

图7

微波辅助萃取对橘红细胞微观结构的影响"

图8

不同萃取方法对附子细胞微观结构的影响"

图9

不同萃取方法对红参片细胞微观结构的影响"

图10

不同萃取方法对橘红细胞微观结构的影响"

图11

不同萃取方法对薏仁细胞微观结构的影响"

1 魏明, 魏联杰, 段晓颖. 中药汤剂改革的现状及发展趋势[J]. 中国中医药信息杂志, 1999, 6(8): 3-4.
WeiM, WeiL J, DuanX Y. Status quo and development trend of traditional Chinese medicine decoction reform[J]. Chinese Journal of Traditional Chinese Medicine, 1999, 6(8): 3-4.
2 焦士龙. 微波提取中药有效成分实验研究[D]. 天津: 天津大学, 2007.
JiaoS L. Experimental study on microwave extraction of active constituents of traditional Chinese medicine [D]. Tianjin: Tianjin University, 2007.
3 辛凯旋, 丁文强, 何煜. 中药超微破壁粉碎技术与中医药现代化[J]. 中草药, 2003, 34(7): 684-685.
XinK X, DingW Q, HeY. Ultra-micro-wall breaking technology of traditional Chinese medicine and modernization of traditional Chinese medicine[J]. Chinese Traditional and Herbal Drugs, 2003, 34(7): 684-685.
4 殷明阳, 刘素香, 张铁军, 等. 复方中药提取工艺研究概况[J]. 中草药, 2015, 46(21): 3279-3283.
YinM Y, LiuS X, ZhangT J, et al. Overview of extraction technology of compound Chinese medicine[J]. Chinese Traditional and Herbal Drugs, 2015, 46(21): 3279-3283.
5 陈瑞战, 张守勤, 王长征. 常温超高压提取人参总皂苷[J]. 化工学报, 2005, 56(5): 911-914.
ChenR Z, ZhangS Q, WangC Z. Extraction of ginseng total saponins by ultra-high pressure at room temperature[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(5): 911-914.
6 孙振仪. 超临界CO2萃取沉香精油的研究[D]. 济南: 山东轻工业学院, 2005.
SunZ Y. Study on supercritical CO2 extraction of agarwood essential oil [D]. Jinan: Shandong Institute of Light Industry, 2005.
7 许源. 紫苏油超临界萃取及环糊精包合一体化研究[D]. 昆明: 昆明理工大学, 2010.
XuY. Supercritical extraction of perilla oil and integration of cyclodextrin inclusion [D]. Kunming: Kunming University of Science and Technology, 2010.
8 王秋红, 赵珊, 王鹏程, 等. 半仿生提取法在中药提取中的应用[J]. 中国实验方剂学杂志, 2016, (18): 187-191.
WangQ H, ZhaoS, WangP C, et al. Application of semi-bionic extraction method in extraction of traditional Chinese medicine[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2016, (18): 187-191.
9 丁元清, 武秀娟, 郝文艳, 等. 中药有效成分提取技术及分析方法研究进展[J]. 山东化工, 2017, 46(3): 59-60.
DingY Q, WuX J, HaoW Y, et al. Research progress on extraction technology and analytical methods of active ingredients in traditional Chinese medicine[J]. Shandong Chemical Industry, 2017, 46(3): 59-60.
10 程贤, 毕良武, 赵振东, 等. 酶辅助提取技术在天然产物提取中的应用研究进展[J]. 生物质化学工程, 2016, 50(3): 71-76.
ChengX, BiL W, ZhaoZ D, et al. Advances in the application of enzyme-assisted extraction technology in natural product extraction[J]. Biomass Chemical Engineering, 2016, 50(3): 71-76.
11 万水昌, 王志祥, 乐龙, 等. 超声提取技术在中药及天然产物提取中的应用[J]. 西北药学杂志, 2008, 23(1): 60-62.
WanS C, WangZ X, LeL, et al. Application of ultrasonic extraction technology in extraction of traditional Chinese medicine and natural products[J]. Northwest Pharmaceutical Journal, 2008, 23(1): 60-62.
12 曾滟棱, 陈笑南, 谭佳威, 等. 闪式提取法在中药制剂工艺中的应用[J]. 西部中医药, 2018, 31(2): 26-29.
ZengY L, ChenX N, TanJ W, et al. Application of flash extraction method in traditional Chinese medicine preparation process [J]. Western Journal of Traditional Chinese Medicine, 2018, 31(2): 26-29.
13 沈瑞. 闪式提取在中药中的应用进展[J]. 中药材, 2015, 38(7): 1540-1542.
ShenR. Progress in the application of flash extraction in traditional Chinese medicine[J]. Journal of Chinese Medicinal Materials, 2015, 38(7): 1540-1542.
14 柏立浩, 张丽. 超临界流体萃取技术在中药研究中的应用与发展[J]. 西部中医药, 2013, 26(2): 114-118.
BaiL H, ZhangL. Application and development of supercritical fluid extraction technology in traditional Chinese medicine research [J]. Western Journal of Traditional Chinese Medicine, 2013, 26(2): 114-118.
15 郭章华, 周敏华. 超临界流体萃取技术在中药研究领域的应用[J]. 国际医药卫生导报, 2003, 9(5): 82-83.
GuoZ H, ZhouM H. Application of supercritical fluid extraction technology in traditional Chinese medicine research[J]. International Medicine and Health Guidance News, 2003, 9(5): 82-83.
16 李卫, 郑成, 宁正祥. 微波动态循环阶段连续逆流提取二氢杨梅素[J]. 化工学报, 2006, 57(2): 376-379.
LiW, ZhengC, NingZ X, et al. Continuous countercurrent extraction of dihydromyricetin in microwave dynamic cycle[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(2): 376-379.
17 张宏梅, 崔佰吉. 微波萃取技术在中药有效成分提取中的应用[J]. 临床医药文献电子杂志, 2017, 4(69): 13661.
ZhangH M, CuiB J. Application of microwave extraction technology in extraction of active components from traditional Chinese medicine[J]. Journal of Clinical Medical Literature, 2017, 4(69): 13661.
18 刘翠玲, 林玉珍. 微波辅助提取技术及其在中药提取中的应用[J]. 山东工业技术, 2017, (17): 288.
LiuC L, LinY Z. Microwave-assisted extraction technology and its application in extraction of traditional Chinese medicine[J]. Shandong Industrial Technology, 2017, (17): 288.
19 张景亮. 微波技术在中药中的应用[J]. 医药, 2016, (9): 305.
ZhangJ L. Application of microwave technology in traditional Chinese medicine[J]. Medicine, 2016, (9): 305.
20 周春源, 旺建伟.中药提取分离技术的研究进展[J].黑龙江中医药, 2016, (2): 68-69.
ZhouC Y, WangJ W. Research progress on extraction and separation technology of traditional Chinese medicine[J]. Heilongjiang Traditional Chinese Medicine, 2016, (2): 68-69.
21 袁茹楠, 胡浩斌, 韩舜禹, 等. 响应面法优化超声-微波提取甘草渣总黄酮工艺[J]. 中成药, 2017, 39(3): 504-508.
YuanR N, HuH B, HanS Y, et al. Optimization of ultrasonic-microwave extraction of total flavonoids from licorice residue by response surface methodology[J]. Chinese Traditional Patent Medicine, 2017, 39(3): 504-508.
22 郭维图. 微波技术在医药领域的应用[J]. 机电信息, 2016, (23): 1-8.
GuoW T. Application of microwave technology in medicine[J]. Electromechanical Information, 2016, (23): 1-8.
23 韩伟, 郝金玉, 薛伯勇, 等. 微波辅助提取青蒿素的研究[J]. 中成药, 2002, 24(2): 83-86.
HanW, HaoJ Y, XueB Y, et al. Microwave-assisted extraction of artemisinin[J]. Chinese Traditional Patent Medicine, 2002, 24(2): 83-86.
24 郝金玉, 韩伟, 施超欧, 等. 黄花蒿中青蒿素的微波辅助提取[J]. 中国医药工业杂志, 2002, 33(8): 385-387.
HaoJ Y, HanW, ShiC O, et al. Microwave-assisted extraction of artemisinin from Artemisia annua L.[J]. Journal of Chinese Pharmaceutical Industry, 2002, 33(8): 385-387.
25 范志刚, 张玉萍, 孙燕, 等. 微波技术对麻黄中麻黄碱浸出量影响[J]. 中成药, 2000, 22(7): 520-521.
FanZ G, ZhangY P, SunY, et al. Effect of microwave technology on leaching of ephedrine in ephedra[J]. Chinese Traditional Patent Medicine, 2000, 22(7): 520-521.
26 施昶, 黄海飞, 李梦园, 等. 微波提取山楂中黄酮类化合物的工艺优化[J]. 生物加工过程, 2017, 15(1): 43-48.
ShiC, HuangH F, LiM Y, et al. Optimization of microwave extraction of flavonoids from Fructus corni[J]. Journal of Bioprocess Engineering, 2017, 15(1): 43-48.
27 黄明辉. 微波辅助提取山茱萸活性成分与体外降血糖活性评价[D]. 广州: 华南理工大学, 2016.
HuangM H. Microwave-assisted extraction of hawthorn active constituents and evaluation of hypoglycemic activity in vitro [D]. Guangzhou: South China University of Technology, 2016.
28 桑红源, 涂郑禹, 夏君, 等. 融冻微波辅助水蒸气蒸馏提取檀香挥发油的工艺研究[J]. 粮食与油脂, 2016, 29(12): 52-55.
SangH Y, TuZ Y, XiaJ, et al. Study on the extraction of volatile oil from sandalwood by microwave assisted steam distillation[J]. Food and Oils, 2016, 29(12): 52-55.
29 郑成, 杨铃, 陈建辉. 微波辅助强化提取显齿蛇葡萄中二氢杨梅素的机理探讨[J]. 化工学报, 2006, 57(5): 1198-1203.
ZhengC, YangL, ChengJ H, et al. Microwave-assisted enhanced extraction of dihydromyricetin from the genus snake grape[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(5): 1198-1203.
30 宋亚会, 姜晓君. 人参皂苷提取工艺研究[J]. 黑龙江科技信息, 2009, (31): 240.
SongY H, JiangX J. Study on extraction process of ginsenosides[J]. Heilongjiang Science and Technology Information, 2009, (31): 240.
31 龚盛昭, 杨卓如. 微波提取黄芩甙的协同效应研究[J]. 精细化工, 2003, 20(7): 427-429.
GongS Z, YangZ R. Study on synergistic effect of microwave extraction of radix astragali[J]. Fine Chemicals, 2003, 20(7): 427-429.
[1] 彭思玉, 郑成, 毛桃嫣, 魏渊, 宋华峰. 双十八烷基四羟乙基二溴丙二铵的微波合成及其性能研究[J]. 化工学报, 2019, 70(S1): 202-210.
[2] 陈燕饶, 毛桃嫣, 郑成. 双十八烷基二羟乙基溴化铵的微波合成及性能[J]. 化工学报, 2019, 70(S1): 226-234.
[3] 商辉, 丁禹, 张文慧. 微波法制备生物柴油研究进展[J]. 化工学报, 2019, 70(S1): 15-22.
[4] 曾昭文, 郑成, 毛桃嫣, 魏渊, 肖润辉, 彭思玉. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(S1): 1-14.
[5] 马密霞, 秦宁, 闵清, 胡文祥. 微波超声波联用萃取白藜芦醇及其苷的HPLC测定[J]. 化工学报, 2019, 70(S1): 124-129.
[6] 杨浩, 闫二艳. 基于束能推进的微波加热效率仿真[J]. 化工学报, 2019, 70(S1): 93-98.
[7] 曾育才, 刘小玲, 梁奇峰, 吕鉴泉. 微波促进碳酸钾催化一锅法合成2-氨基-3氰基-4-芳基-4H-苯并色烯衍生物[J]. 化工学报, 2019, 70(S1): 110-114.
[8] 王超前, 王文龙, 李哲, 孙静, 宋占龙, 赵希强, 毛岩鹏. 基于微波诱导定向加热的污泥新型热解方法能耗分析[J]. 化工学报, 2019, 70(S1): 168-176.
[9] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[10] 秦宁, 闵清, 邵开元, 胡文祥. 间甲基苯甲脒盐酸盐的合成研究[J]. 化工学报, 2019, 70(S1): 242-247.
[11] 彭超, 王榆元, 邓昌爱, 赵方方, 游奎一. 连续反应-萃取耦合技术制备硫酸羟胺[J]. 化工学报, 2019, 70(5): 1842-1847.
[12] 汪勤, 张冰剑, 何畅, 陈清林. 基于能量目标的芳烃萃取精馏溶剂评价模型[J]. 化工学报, 2019, 70(5): 1815-1822.
[13] 安东海, 韩晓林, 程星星, 周滨选, 郑瑛, 董勇. 不同烟气组分对粉状活性焦吸附汞的影响机理[J]. 化工学报, 2019, 70(4): 1575-1582.
[14] 王鑫博, 张延平, 李秀萍, 赵荣祥. EMIES/nC9H10O2基低共熔溶剂的制备及其氧化脱硫活性的研究[J]. 化工学报, 2019, 70(4): 1567-1574.
[15] 侯莲霞, 袁兆平, 乔鸿昌, 周静红, 周兴贵. Ni-W2C催化葡萄糖氢解制备低碳二元醇反应机理研究[J]. 化工学报, 2019, 70(4): 1390-1400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .