化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1942-1950.doi: 10.11949/j.issn.0438-1157.20181390

• 能源和环境工程 • 上一篇    下一篇

Fe2O3对甘氨酸热解特性及氮转化的影响

魏砾宏1(),郭良振1,蒋进元2,刘美佳2,杨天华1   

  1. 1. 沈阳航空航天大学能源与环境学院,辽宁 沈阳 110300
    2. 中国环境科学研究院,北京 100012
  • 收稿日期:2018-11-21 修回日期:2019-01-10 出版日期:2019-05-05 发布日期:2019-01-21
  • 通讯作者: 魏砾宏 E-mail:weilihong@sau.edu.cn
  • 作者简介:魏砾宏(1975—),女,博士,教授,<email>weilihong@sau.edu.cn</email>
  • 基金资助:
    国家自然科学基金面上项目(51576135);辽宁省自然科学基金项目(20170540710)

Influence of Fe2O3 on glycine pyrolysis characteristics and nitrogen conversion

Lihong WEI1(),Liangzhen GUO1,Jinyuan JIANG2,Meijia LIU2,Tianhua YANG1   

  1. 1. College of Energy and Environment, Shenyang Aerospace University, Shenyang 110300, Liaoning, China
    2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China
  • Received:2018-11-21 Revised:2019-01-10 Online:2019-05-05 Published:2019-01-21
  • Contact: Lihong WEI E-mail:weilihong@sau.edu.cn

摘要:

选用污泥中典型氨基酸-甘氨酸(Gly)为研究对象,利用差式热值分析-质谱联用技术(DSC-MS)和固定床实验研究了Fe2O3对甘氨酸热解特性、NO x 前驱物生成规律以及氮转化特性的影响。结果表明:热解特性实验中,由于Fe2O3将Gly的第一热失重阶段一分为二,导致其热解过程由2个阶段增至3个;Fe2O3使Gly热解起始温度及气体析出温度降低50℃,并通过促进半焦的二次裂解反应使Gly失重率增加23%。与Fe2O3对Gly热解过程的影响一致,Fe2O3将含N气体析出过程同样分成3个独立的阶段。固定床实验中,在Fe2O3/N=0.5时,Fe2O3最大程度地抑制了NO x 前驱物(NH3和HCN)析出,使其减少30%。由于Fe2O3促进肽脱水缩合、环化和芳香化反应,使得更多P-N、N-5和N-6固定在半焦中,半焦氮残留率增加5%。

关键词: 甘氨酸, 固定床, 热解, 气体, Fe2O3, NO x 前驱物

Abstract:

The influences of Fe2O3 on glycine pyrolysis characteristics, generation mechanisms of NO x precursors and transformation characteristics of nitrogen were investigated by DSC-MS and fixed bed experiment. The results indicated that the first thermal weightlessness stage of glycine (Gly) was divided into two parts by Fe2O3, so that the whole pyrolysis process was increased from 2 to 3 stages. Moreover, Fe2O3 can not only reduced the pyrolysis initiation temperature and the temperature of gas evolution by 50℃, but also promoted the secondary cracking reaction of char, which increased the weight loss rate of Gly by 23%. Furthermore, the evolution process of N-containing gases was divided into three independent stages by Fe2O3, which was corresponded to the Gly pyrolysis process. In the fixed bed experiment, most effective suppression of Fe2O3 on NO x precursors (NH3 and HCN) was achieved when the molar ratio of Fe2O3 to N is 0.5, which was decreased by 30%. Since Fe2O3 promotes peptide dehydration condensation, cyclization and aromatization reaction, more P-N, N-5 and N-6 are fixed in the semi-coke, and the semi-coke nitrogen residual rate is increased by 5%.

Key words: glycine, fixed-bed, pyrolysis, gas, Fe2O3, NO x precursors

中图分类号: 

  • TK 16

图1

立式固定床实验台"

图2

热失重和热失重速率曲线(20℃/min升温速率)"

图3

Fe2O3对甘氨酸热解过程的影响"

表1

样品的热解特性指数"

样品编号 T s/°C T max/°C T 1/2/°C DTGmax/(%/min) R v×108/(%/(min·℃3))
Gly 240 273 257.5 1.43 8.47
GF0.75 190 568.3 554.8 0.63 1.05

图4

热解过程中含N气体的质谱分析"

表2

含N气体析出温度区间及峰面积"

气体 Gly GF0.75
温度区间/℃ 峰面积×109 温度区间/°C 峰面积×109
合计 0.10 0.57

NH3[border:border-top:solid;]

250~402 69.5 191~309 61.6
309~367 17.0
367~601 41.0
合计 69.5 119.6

HCN[border:border-top:solid;]

251~543 4.7 200~357 1.4
543~800 7.6 357~515 1.8
515~718 1.9
合计 12.3 5.1

NO[border:border-top:solid;]

250~359 0.9 192~359 3.6
359~575 1.1 359~533 3.0
533~635 1.0
合计 2 7.6

HNCO[border:border-top:solid;]

256~333 0.3 191~331 0.4
333~572 1.6 331~521 0.5
572~794 0.8 521~631 0.3
合计 2.7 1.2

NO2[border:border-top:solid;]

247~375 0.10 190~327 0.19
327~520 0.25
520~618 0.13

图5

Fe2O3对NO x 前驱物产率的影响"

图6

Fe2O3对半焦氮的影响"

1 Yang J K , Xu X , Liang S , et al . Enhanced hydrogen production in catalytic pyrolysis of sewage sludge by red mud: thermogravimetric kinetic analysis and pyrolysis characteristics[J]. International Journal of Hydrogen Energy, 2018, 43(16): 7795-7807.
2 Zhu J J , Yang Y , Yang L , et al . High quality syngas produced from the co-pyrolysis of wet sewage sludge with sawdust[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5463-5472.
3 Tang S Q , Zheng C M , Yan F , et al . Product characteristics and kinetics of sewage sludge pyrolysis driven by alkaline earth metals[J]. Energy, 2018, 153: 921-932.
4 Wei F , Cao J P , Zhao X Y , et al . Formation of aromatics and removal of nitrogen in catalytic fast pyrolysis of sewage sludge: a study of sewage sludge and model amino acids[J]. Fuel, 2018, 218: 148-154.
5 Ahlberg G , Gustafsson O , Wedel P . Leaching of metals from sewage sludge during one year and their relationship to particle size[J]. Environmental Pollution, 2006, 144(2): 545-553.
6 Fytili D , Zabaniotou A . Utilization of sewage sludge in EU application of old and new methods—a review[J]. Renewable & Sustainable Energy Reviews, 2008, 12(1): 116-140.
7 Liu T T , Liu Z G , Zheng Q F , et al . Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis[J]. Bioresource Technology, 2018, 247: 282-290.
8 Wei F , Cao J P , Zhao X Y , et al . Nitrogen evolution during fast pyrolysis of sewage sludge under inert and reductive atmospheres[J]. Energy & Fuel, 2017, 31(7): 7191-7196.
9 Ko J H , Wang J C , Xu Q Y . Characterization of particulate matter formed during sewage sludge pyrolysis[J]. Fuel, 2018, 224: 210-218.
10 侯封校, 金晶, 林郁郁, 等 . Fe2O3对污泥热解特性及部分NO x 前驱物转化规律的影响[J]. 燃烧科学与技术, 2017, 23(1): 90-95.
Hou F X , Jin J , Lin Y Y , et al . Influence of Fe2O3 on sludge pyrolysis characteristics and partial transformation mechanisms of NO x precursors[J]. Journal of Combustion Science and Technology, 2017, 23(1): 90-95.
11 Wei L H , Wen L N , Yang T H , et al . Nitrogen transformation during sewage sludge pyrolysis[J]. Energy & Fuels, 2015, 29(8): 5088-5094.
12 Wei L H , Wen L N , Liu M J , et al . Interaction characteristics of mineral matter and nitrogen during sewage sludge pyrolysis[J]. Energy & Fuels, 2016, 30(12): 10505-10510.
13 沈洪浩, 金晶, 林郁郁, 等 . CaO对大豆蛋白热解特性及NH3等含氮化合物释放的影响[J]. 化工进展, 2016, 35(7): 2263-3367.
Shen H H , Jin J , Lin Y Y , et al . Influence of CaO on soybean protein pyrolysis characteristics and NH3 and other nitrogenous compounds release[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2263-2267.
14 Liu H , Zhang Q , Hu H Y , et al . Catalytic role of conditioner CaO in nitrogen transformation during sewage sludge pyrolysis[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2759-2766.
15 Ren Q Q , Zhao C S . NO x and N2O precursors (NH3 and HCN) from biomass pyrolysis: interaction between amino acid and mineral matter[J]. Applied Energy, 2013, 112(4): 170-174.
16 Zhang J , Tian Y , Cui Y N , et al . Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: a protein model compound study[J]. Bioresource Technology, 2013, 132(2): 57-63.
17 Liu G Y , Wright M M , Zhao Q L , et al . Catalytic pyrolysis of amino acids: comparison of aliphatic amino acid and cyclic amino acid[J]. Energy Conversion & Management, 2016, 112: 220-225.
18 Chen H P , Si Y H , Chen Y Q , et al . NO x precursors from biomass pyrolysis: distribution of amino acids in biomass and tar-N during devolatilization using model compounds[J]. Fuel, 2017, 187: 367-375.
19 Sharma R K , Chan W G , Wang J , et al . On the role of peptides in the pyrolysis of amino acids[J]. Journal of Analytical & Applied Pyrolysis, 2004, 72(1): 153-163.
20 Yi L L , Liu H , Lu G , et al . Effect of mixed Fe/Ca additives on nitrogen transformation during protein and amino acid pyrolysis[J]. Energy & Fuels, 2017, 31(9): 9484-9490.
21 王兴栋, 李春星, 尤甫天, 等 . 污泥水热处理过程中氮元素的迁移转化[J]. 化工学报, 2018, 69(6): 2688-2696.
Wang X D , Li C X , You F T , et al . Migration and transformation of nitrogen in sewage sludge during hydrothermal treatment[J]. CIESC Journal, 2018, 69(6): 2688-2696.
22 Huang W W , Yuan T , Zhao Z W , et al . Coupling hydrothermal treatment with stripping technology for fast ammonia release and effective nitrogen recovery from chicken manure [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(7): 3704-3711.
23 Tsubouchi N , Hashimoto H , Ohtsuka Y . High catalytic performance of fine particles of metallic iron formed from limonite in the decomposition of a low concentration of ammonia[J]. Catalysis Letters, 2005, 105(3/4): 203-208.
24 Ratcliff M A , Medley E E , Simmonds P G . Pyrolysis of amino acids mechanistic considerations[J]. Journal of Organic Chemistry, 1974, 5(40): 1841.
25 Cao J P , Zhao X Y , Morishita K , et al . Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge[J]. Bioresource Technology, 2010, 101(19): 7648-7652.
26 郭明山, 金晶, 刘敦禹, 等 . 添加木质素对污泥热解过程氮转化的影响[J]. 化工学报, 2017, 68(4): 1590-1599.
Guo M S , Jin J , Liu D Y , et al . Effect of lignin on nitrogen transformation during pyrolysis of sewage sludge[J]. CIESC Journal, 2017, 68(4): 1590-1599.
27 Tian K , Liu W J , Qian T T , et al . Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge[J]. Environmental Science & Technology, 2014, 48(18): 10888-10896.
28 车得福 . 煤氮热变迁与氮氧化物生成[M]. 西安: 西安交通大学出版社, 2013.
Che D F . Thermal Coal-N Transformation and Nitrogen Oxide Generation[M]. Xi’an: Xi’an Jiaotong University Press, 2013.
29 李尚, 金晶, 林郁郁, 等 . 准东煤与污泥共热解过程中NO x 前驱物释放规律[J]. 化工学报, 2017, 68(5): 2089-2095.
Li S , Jin J , Lin Y Y , et al . Release of NO x precursors in co-pyrolysis process of Zhun Dong coal mixed with sludge[J]. CIESC Journal, 2017, 68(5): 2089-2095.
30 Ohtsuka Y , Xu C B , Kong D P , et al . Decomposition of ammonia with iron and calcium catalysts supported on coal chars[J]. Fuel, 2004, 83(6): 685-692.
[1] 孟繁锐, 李伯阳, 李先春, 邱爽. K2CO3对兰炭催化气化特性的影响[J]. 化工学报, 2019, 70(S1): 99-109.
[2] 王超前, 王文龙, 李哲, 孙静, 宋占龙, 赵希强, 毛岩鹏. 基于微波诱导定向加热的污泥新型热解方法能耗分析[J]. 化工学报, 2019, 70(S1): 168-176.
[3] 洪迪昆, 操政, 杨昌敏, 刘亮, 郭欣. 钙催化苯酚反应的分子动力学模拟[J]. 化工学报, 2019, 70(5): 1788-1794.
[4] 武永健, 罗春欢, 魏琳, 朱探金, 苏庆泉. 基于化学链燃烧的转炉放散煤气利用研究[J]. 化工学报, 2019, 70(5): 1923-1931.
[5] 梁文胜, 刘江涛, 赵月, 黄伟, 左志军. NiO和Ni催化剂对苯甲酸热解机理的理论计算[J]. 化工学报, 2019, 70(4): 1429-1435.
[6] 苏银皎, 刘轩, 李丽锋, 李晓航, 姜平, 滕阳, 张锴. 三类煤阶煤中汞的赋存形态分布特征[J]. 化工学报, 2019, 70(4): 1559-1566.
[7] 沈伟伟, 邓道明, 刘乔平, 宫敬. 基于环雾流理论的气井临界流速预测模型[J]. 化工学报, 2019, 70(4): 1318-1330.
[8] 宋宇淙, 丁晓墅, 闫亚辉, 王淑芳, 王延吉. 氧化石墨烯复合金属催化剂催化碳酸二甲酯合成反应性能[J]. 化工学报, 2019, 70(4): 1401-1408.
[9] 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
[10] 陈传刚, 丁雪兴, 陆俊杰, 张伟政, 陈金林. 摩擦副界面微造型序列对气体密封性能的影响[J]. 化工学报, 2019, 70(3): 1016-1026.
[11] 郑莉芳, 王兆中, 谢亚杰, 岳丽娜, 王立. γ辐照作用下GFRP热分解动力学研究[J]. 化工学报, 2018, 69(S1): 161-169.
[12] 孙星, 徐可可, 孟华. 超临界压力正癸烷在螺旋管中传热与裂解吸热现象的数值模拟[J]. 化工学报, 2018, 69(S1): 20-25.
[13] 李思广, 李彦军, 杨龙滨, 邵亚洲, 孙剑蓉, 徐润章. 基于不同状态方程预测气体水合物相平衡条件[J]. 化工学报, 2018, 69(S1): 8-14.
[14] 张继宗, 常厚春, 常建民, 龙金星, 李雪辉. 生物油对生物油基淀粉胶黏剂性能的影响[J]. 化工学报, 2018, 69(S1): 123-128.
[15] 王旭, 徐森, 田曜恺, 刘大斌. 硝酸铵的最小点火压力影响因素[J]. 化工学报, 2018, 69(8): 3754-3762.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .