化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1823-1831.doi: 10.11949/j.issn.0438-1157.20181389

• 分离工程 • 上一篇    下一篇

锥体开缝对水力旋流器固液分离性能的影响

段继海1(),黄帅彪1,2,高昶1,2,陈阿强2,黄青山2,3()   

  1. 1. 青岛科技大学化工学院,山东 青岛 266042
    2. 中国科学院青岛生物能源与过程研究所,山东 青岛 266101
    3. 中国科学院过程工程研究所,绿色过程与工程重点实验室,北京 100190
  • 收稿日期:2018-11-20 修回日期:2019-02-26 出版日期:2019-05-05 发布日期:2019-05-10
  • 通讯作者: 黄青山 E-mail:duanjihai@qust.edu.cn;qshuang@ipe.ac.cn
  • 作者简介:<named-content content-type="corresp-name">段继海</named-content>(1970—),男,博士,副教授,<email>duanjihai@qust.edu.cn</email>|黄青山(1978—),男,博士,研究员,<email>qshuang@ipe.ac.cn</email>
  • 基金资助:
    国家重点研发计划项目(2016YFB0301701);中国科学院科研装备研制项目(YZ201641);中国科学院关键技术人才项目(Y8110519DM)

Influence of slit structure in hydrocyclone conical section on solid-liquid separation performance

Jihai DUAN1(),Shuaibiao HUANG1,2,Chang GAO1,2,Aqiang CHEN2,Qingshan HUANG2,3()   

  1. 1. School of Chemical Engineering and Technology, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
    2. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
    3. Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2018-11-20 Revised:2019-02-26 Online:2019-05-05 Published:2019-05-10
  • Contact: Qingshan HUANG E-mail:duanjihai@qust.edu.cn;qshuang@ipe.ac.cn

摘要:

设计了一种新型锥体切向开缝结构的水力旋流器,并针对锥体开缝长度、位置、数量以及开缝型式对水力旋流器分离性能的影响开展了实验研究。研究结果表明:锥体开缝会使水力旋流器的压降大幅降低;开缝长度由10 mm增大到50 mm的过程中,分离效率呈现先增大后减小的趋势,开缝长度为20 mm时最佳;第二条缝隙的开缝位置由锥体底部向上移动的过程中,分离效率也呈现出先增大后减小的趋势,距底部缝隙80 mm时分离效率最高;保持出口截面积不变,在底部开6 mm长的缝隙,另外在最佳开缝位置处开一条长缝隙时的分离效率最高,且与底部缝隙呈反方向分布是最优的开缝型式,与常规水力旋流器对比,在高流量下其分离效率仅降低了1.48%,但压降降低可达36.84%,节能效果显著,具有重要的应用价值。

关键词: 分离, 实验验证, 流动, 水力旋流器, 开缝结构, 压降, 分离效率

Abstract:

A new type of hydrocyclone with a tangentially slitted structure is designed. The experimental study on the effect of the length, position, number and style of the slit on the separation performance of the hydrocyclone is carried out. It is shown that compared with the traditional hydrocyclone, the pressure drop of the slit-cone hydrocyclone is significantly reduced. The separation efficiency of the hydrocyclone tends to increase at first and then decrease when the length of the slit increases from 10 mm to 50 mm, and an optimal slit length of 20 mm is observed. In the process of moving the 20 mm slit upward from the first 6 mm slit at the bottom of the cone, the influence of the second slit position on the separation efficiency of the hydrocyclone is similar to that of the slit length. That is to say, it tends to increase at first and then decrease, and there is an optimal distance of 80 mm between the first slit and the second one. When keeps the cross-section area of the slits equaling to that of underflow in the traditional hydrocyclone under the conditions of optimized slit length and position, it is found that the separation efficiency of one slit in the cone is better than that of two, and the style of two-slits located at opposite direction is the best among all the cases investigated. Compared with the classical hydrocyclone, the separation efficiency in the optimal slit-cone hydrocyclone can decrease only 1.48% while the absolute pressure drop can reduce as high as 36.84% at a high flow rate. Therefore, it is a promising hydrocyclone for industrial applications to save energy consumption.

Key words: separation, experimental validation, flow, hydrocyclone, slit structure, pressure drop, separation efficiency

中图分类号: 

  • TQ 028.54

图1

传统和开缝水力旋流器的结构示意图"

表1

锥体开缝结构编号及对应尺寸"

Type Cones with different slits structure
a/mm b/mm c/mm a'/mm c'/mm
A 0 0 0 0 0
B 26 0 0 26 0
C 10 0 0 10 0
D 20 0 0 20 0
E 30 0 0 30 0
F 40 0 0 40 0
G 50 0 0 50 0
H 6 20 20 6 20
I 6 40 20 6 20
J 6 80 20 6 20
K 6 120 20 6 20
L 6 160 20 6 20
M 6 200 20 6 20
N 6 80 46 0 0
O 6 80 0 0 46
P 6 80 40 6 0

图2

两种实验物料的粒度分布"

图3

两种不同物料下进口流速对传统和锥体开缝水力旋流器分离效率和压降的影响"

图4

不同开缝长度下进口流速对分离效率和压降的影响"

图5

不同开缝位置下进口流速对分离效率和压降的影响"

图6

不同开缝数量及开缝形式下进口流速对分离效率和压降的影响"

1 Bradley D . The Hydrocyclone: International Series of Monographs in Chemical Engineering[M]. Pergamon, London: Elsevier, 2013.
2 Svarovsky L , Thew M . Hydrocyclones: Analysis and Applications[M]. Letchworth, UK: Springer Science & Business Media, 2013.
3 Svarovsky L . Solid-Liquid Separation[M]. London, UK: Elsevier, 2000.
4 Vieira L G M , Damasceno J J R , Barrozo M A S . Improvement of hydrocyclone separation performance by incorporating a conical filtering wall[J]. Chemical Engineering and Processing, 2010, 49(5): 460-467.
5 Mognon J L , da Silva J M , Bicalho I C , et al . Modular mini-hydrocyclone desilter type of 30 mm: an experimental and optimization study[J]. Journal of Petroleum Science and Engineering, 2015, 129: 145-152.
6 Zhao L , Jiang M H , Xu B , et al . Development of a new type high-efficient inner-cone hydrocyclone[J]. Chemical Engineering Research and Design, 2012, 90(12): 2129-2134.
7 Zhao L , Li Y , Xu B , et al . Design and numerical simulation analysis of an integrative gas-liquid-solid separation hydrocyclone [J]. Chemical Engineering & Technology, 2015, 38(12): 2146-2152.
8 马艺, 王振波, 金有海 . 导叶式液液旋流器内油相浓度分布数值模拟[J]. 化工学报, 2011, 62(2): 420-426.
Ma Y , Wang Z B , Jin Y H . Simulation of oil-phase concentration field in vane-guided hydrocyclone[J]. CIESC Journal, 2011, 62(2): 420-426.
9 马艺, 金有海, 王振波 . 两种不同入口结构型式旋流器内的流场模拟[J]. 化工进展, 2009, 28(S1): 497-501.
Ma Y , Jin Y H , Wang Z B . Simulation the flow field in hydrocyclone with two different kinds of inlet structure[J]. Chemical Industry and Engineering Progress, 2009, 28(S1): 497-501.
10 Xu Y X , Liu Y , Zhang Y H , et al . Effect of shear stress on deoiling of oil-contaminated catalysts in a hydrocyclone[J]. Chemical Engineering & Technology, 2016, 39(3): 567-575.
11 Huang Q S , Yang C , Yu G Z , et al . CFD simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model[J]. Chemical Engineering Science, 2010, 65(20): 5527-5536.
12 黄青山, 张伟鹏, 杨超, 等 . 环流反应器的流动, 混合与传递特性[J]. 化工学报, 2014, 65(7): 2465-2473.
Huang Q S , Zhang W P , Yang C , et al . Characteristics of multiphase flow, mixing and transport phenomena in airlift loop reactor[J]. CIESC Journal, 2014, 65(7): 2465-2473.
13 Chu K , Chen J , Yu A B , et al . Numerical studies of multiphase flow and separation performance of natural medium cyclones for recovering waste coal[J]. Powder Technology, 2017, 314: 532-541.
14 Huang Q S , Zhang W P , Yang C . Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction[J]. Chemical Engineering Science, 2015, 135: 441-451.
15 王剑刚, 张艳红, 白兆圆, 等 . 进口尺寸对旋转流场分离特征的影响[J]. 化工学报, 2014, 65(1): 205-212.
Wang J G , Zhang Y H , Bai Z Y , et al . Effect of inlet size on separation flow field inside hydrocyclone[J]. CIESC Journal, 2014, 65(1): 205-212.
16 Wang H L , Zhang Y H , Wang J G , et al . Cyclonic separation technology: researches and developments[J]. Chinese Journal of Chemical Engineering, 2012, 20(2): 212-219.
17 Son J H , Hong M , Yoo H C , et al . A multihydrocyclone water pretreatment system to reduce suspended solids and the chemical oxygen demand[J]. Desalination and Water Treatment, 2016, 57(7): 2996-3001.
18 Yu J F , Fu J , Cheng H , et al . Recycling of rare earth particle by mini-hydrocyclones[J]. Waste Management, 2017, 61: 362-371.
19 Cullivan J , Williams R , Dyakowski T , et al . New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics[J]. Minerals Engineering, 2004, 17(5): 651-660.
20 Xu Y , Song X , Sun Z , et al . Simulation analysis of multiphase flow and performance of hydrocyclones at different atmospheric pressures[J]. Industrial & Engineering Chemistry Research, 2011, 51(1): 443-453.
21 Wang L Y , Zheng Z C , Wu Y X , et al . Numerical and experimental study on liquid-solid flow in a hydrocyclone[J]. Journal of Hydrodynamics, 2009, 21(3): 408-414.
22 Olson T , van Ommen R . Optimizing hydrocyclone design using advanced CFD model[J]. Minerals Engineering, 2004, 17(5): 713-720.
23 Santos S , Jones K , Abdul R , et al . Treatment of wet process hardboard plant VOC emissions by a pilot scale biological system[J]. Biochemical Engineering Journal, 2007, 37(3): 261-270.
24 Guo X , Yao L S , Huang Q S . Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae[J]. Bioresource Technology, 2015, 190: 189-195.
25 Huang Q S , Jiang F H , Wang L Z , et al . Design of photobioreactors for mass cultivation of photosynthetic organisms[J]. Engineering, 2017, 3(3): 318-329.
26 Neesse T , Dueck J , Schwemmer H , et al . Using a high pressure hydrocyclone for solids classification in the submicron range[J]. Minerals Engineering, 2015, 71: 85-88.
27 Fan P P , Peng H T , Fan M Q . Using a permanent magnetic field to manipulate the separation effect of a dense medium cyclone[J]. Separation Science and Technology, 2016, 51(11): 1913-1923.
28 Yang T , Geng S J , Yang C , et al . Hydrodynamics and mass transfer in an internal airlift slurry reactor for process intensification[J]. Chemical Engineering Science, 2018, 184: 126-133.
29 Hwang K J , Hwang Y W , Yoshida H . Design of novel hydrocyclone for improving fine particle separation using computational fluid dynamics[J]. Chemical Engineering Science, 2013, 85: 62-68.
30 Mokni I , Dhaouadi H , Bournot P , et al . Numerical investigation of the effect of the cylindrical height on separation performances of uniflow hydrocyclone[J]. Chemical Engineering Science, 2015, 122: 500-513.
31 刘鸿雁, 王亚, 韩天龙, 等 . 水力旋流器溢流管结构对微细颗粒分离的影响[J]. 化工学报, 2017, 68(5): 1921-1931.
Liu H Y , Wang Y , Han T L , et al . Influence of vortex finder configurations on the separation of fine particles[J]. CIESC Journal, 2017, 68(5): 1921-1931.
32 Ni L , Tian J , Zhao J . Experimental study of the effect of underflow pipe diameter on separation performance of a novel de-foulant hydrocyclone with continuous underflow and reflux function[J]. Separation and Purification Technology, 2016, 171: 270-279.
33 刘鸿雁, 韩天龙, 王亚, 等 . 水力旋流器新型出口挡板结构对分离性能的影响[J]. 化工学报, 2018, 69(5): 2081-2088.
Liu H Y , Han T L , Wang Y , et al . Influence of new outlet configurations on hydrocyclone separation performance[J]. CIESC Journal, 2018, 69(5): 2081-2088.
34 Hamdy O , Bassily M A , El-Batsh H M , et al . Numerical study of the effect of changing the cyclone cone length on the gas flow field[J]. Applied Mathematical Modelling, 2017, 46: 81-97.
35 Monredon T , Hsieh K , Rajamani R . Fluid flow model of the hydrocyclone: an investigation of device dimensions[J]. International Journal of Mineral Processing, 1992, 35(1/2): 65-83.
36 Vakamalla T R , Koruprolu V B R , Arugonda R , et al . Development of novel hydrocyclone designs for improved fines classification using multiphase CFD model[J]. Separation and Purification Technology, 2017, 175: 481-497.
37 Chu L Y , Chen W M , Lee X Z . Effect of structural modification on hydrocyclone performance[J]. Separation and Purification Technology, 2000, 21(1/2): 71-86.
38 Huang A N , Ito K , Fukasawa T , et al . Classification performance analysis of a novel cyclone with a slit on the conical part by CFD simulation[J]. Separation and Purification Technology, 2018, 190: 25-32.
39 Mazyan W , Ahmadi A , Brinkerhoff J , et al . Enhancement of cyclone solid particle separation performance based on geometrical modification: numerical analysis[J]. Separation and Purification Technology, 2018, 191: 276-285.
40 张立英, 黄青山 . 气升式环流反应器的理论研究进展[J]. 过程工程学报, 2011, 11(1): 162-173.
Zhang L Y , Huang Q S . Research progress in the modeling theory of airlift loop reactor[J]. The Chinese Journal of Process Engineering, 2011, 11(1): 162-173.
41 Huang Q S , Yang C , Yu G Z , et al . 3-D simulations of an internal airlift loop reactor using a steady two‐fluid model[J]. Chemical Engineering & Technology, 2007, 30(7): 870-879.
42 Huang Q S , Yang C , Yu G Z , et al . Sensitivity study on modeling an internal airlift loop reactor using a steady 2D two-fluid model[J]. Chemical Engineering & Technology, 2008, 31(12): 1790-1798.
43 Yang C , Mao Z S . Numerical Simulation of Multiphase Reactors with Continuous Liquid Phase[M]. Amsterdam: Academic Press, 2014.
44 金国淼 . 除尘设备设计[M]. 北京: 化学工业出版社, 2002.
Jin G M . Design of Dust Removal Equipment[M]. Beijing: Chemical Industry Press, 2002.
[1] 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
[2] 曾昭文, 郑成, 毛桃嫣, 魏渊, 肖润辉, 彭思玉. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(S1): 1-14.
[3] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[4] 吴君强, 蒋文明, 杜仕林, 刘杨. 水平管路水环输送稠油减阻模拟实验[J]. 化工学报, 2019, 70(5): 1734-1741.
[5] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[6] 颜建国, 朱凤岭, 郭鹏程, 罗兴锜. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787.
[7] 邱君君, 张小松, 李玮豪. 无霜空气源热泵系统冬季除湿性能初步实验[J]. 化工学报, 2019, 70(4): 1605-1613.
[8] 朱兵国, 吴新明, 张良, 孙恩慧, 张海松, 徐进良. 垂直上升管内超临界CO2 流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290.
[9] 朱明汉, 白鹏飞, 胡艳鑫, 黄金. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357.
[10] 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308.
[11] 梁倩卿, 马学虎, 王凯, 春江, 郝婷婷, 兰忠, 王亚雄. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281.
[12] 施素丽, 鹿院卫, 于强, 吴玉庭. 熔盐单罐释热过程换热器取热方式优选[J]. 化工学报, 2019, 70(3): 857-864.
[13] 生丽莎, 陈振乾. 静电辅助多孔液体的制备及特性研究[J]. 化工学报, 2019, 70(3): 1163-1170.
[14] 王瀚琳, 王德强, 王凯, 骆广生. 微反应器内苯甲醚连续合成[J]. 化工学报, 2019, 70(3): 922-928.
[15] 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .