化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1823-1831.doi: 10.11949/j.issn.0438-1157.20181389
段继海1(),黄帅彪1,2,高昶1,2,陈阿强2,黄青山2,3(
)
Jihai DUAN1(),Shuaibiao HUANG1,2,Chang GAO1,2,Aqiang CHEN2,Qingshan HUANG2,3(
)
摘要:
设计了一种新型锥体切向开缝结构的水力旋流器,并针对锥体开缝长度、位置、数量以及开缝型式对水力旋流器分离性能的影响开展了实验研究。研究结果表明:锥体开缝会使水力旋流器的压降大幅降低;开缝长度由10 mm增大到50 mm的过程中,分离效率呈现先增大后减小的趋势,开缝长度为20 mm时最佳;第二条缝隙的开缝位置由锥体底部向上移动的过程中,分离效率也呈现出先增大后减小的趋势,距底部缝隙80 mm时分离效率最高;保持出口截面积不变,在底部开6 mm长的缝隙,另外在最佳开缝位置处开一条长缝隙时的分离效率最高,且与底部缝隙呈反方向分布是最优的开缝型式,与常规水力旋流器对比,在高流量下其分离效率仅降低了1.48%,但压降降低可达36.84%,节能效果显著,具有重要的应用价值。
中图分类号:
1 | Bradley D . The Hydrocyclone: International Series of Monographs in Chemical Engineering[M]. Pergamon, London: Elsevier, 2013. |
2 | Svarovsky L , Thew M . Hydrocyclones: Analysis and Applications[M]. Letchworth, UK: Springer Science & Business Media, 2013. |
3 | Svarovsky L . Solid-Liquid Separation[M]. London, UK: Elsevier, 2000. |
4 | Vieira L G M , Damasceno J J R , Barrozo M A S . Improvement of hydrocyclone separation performance by incorporating a conical filtering wall[J]. Chemical Engineering and Processing, 2010, 49(5): 460-467. |
5 | Mognon J L , da Silva J M , Bicalho I C , et al . Modular mini-hydrocyclone desilter type of 30 mm: an experimental and optimization study[J]. Journal of Petroleum Science and Engineering, 2015, 129: 145-152. |
6 | Zhao L , Jiang M H , Xu B , et al . Development of a new type high-efficient inner-cone hydrocyclone[J]. Chemical Engineering Research and Design, 2012, 90(12): 2129-2134. |
7 | Zhao L , Li Y , Xu B , et al . Design and numerical simulation analysis of an integrative gas-liquid-solid separation hydrocyclone [J]. Chemical Engineering & Technology, 2015, 38(12): 2146-2152. |
8 | 马艺, 王振波, 金有海 . 导叶式液液旋流器内油相浓度分布数值模拟[J]. 化工学报, 2011, 62(2): 420-426. |
Ma Y , Wang Z B , Jin Y H . Simulation of oil-phase concentration field in vane-guided hydrocyclone[J]. CIESC Journal, 2011, 62(2): 420-426. | |
9 | 马艺, 金有海, 王振波 . 两种不同入口结构型式旋流器内的流场模拟[J]. 化工进展, 2009, 28(S1): 497-501. |
Ma Y , Jin Y H , Wang Z B . Simulation the flow field in hydrocyclone with two different kinds of inlet structure[J]. Chemical Industry and Engineering Progress, 2009, 28(S1): 497-501. | |
10 | Xu Y X , Liu Y , Zhang Y H , et al . Effect of shear stress on deoiling of oil-contaminated catalysts in a hydrocyclone[J]. Chemical Engineering & Technology, 2016, 39(3): 567-575. |
11 | Huang Q S , Yang C , Yu G Z , et al . CFD simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model[J]. Chemical Engineering Science, 2010, 65(20): 5527-5536. |
12 | 黄青山, 张伟鹏, 杨超, 等 . 环流反应器的流动, 混合与传递特性[J]. 化工学报, 2014, 65(7): 2465-2473. |
Huang Q S , Zhang W P , Yang C , et al . Characteristics of multiphase flow, mixing and transport phenomena in airlift loop reactor[J]. CIESC Journal, 2014, 65(7): 2465-2473. | |
13 | Chu K , Chen J , Yu A B , et al . Numerical studies of multiphase flow and separation performance of natural medium cyclones for recovering waste coal[J]. Powder Technology, 2017, 314: 532-541. |
14 | Huang Q S , Zhang W P , Yang C . Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction[J]. Chemical Engineering Science, 2015, 135: 441-451. |
15 | 王剑刚, 张艳红, 白兆圆, 等 . 进口尺寸对旋转流场分离特征的影响[J]. 化工学报, 2014, 65(1): 205-212. |
Wang J G , Zhang Y H , Bai Z Y , et al . Effect of inlet size on separation flow field inside hydrocyclone[J]. CIESC Journal, 2014, 65(1): 205-212. | |
16 | Wang H L , Zhang Y H , Wang J G , et al . Cyclonic separation technology: researches and developments[J]. Chinese Journal of Chemical Engineering, 2012, 20(2): 212-219. |
17 | Son J H , Hong M , Yoo H C , et al . A multihydrocyclone water pretreatment system to reduce suspended solids and the chemical oxygen demand[J]. Desalination and Water Treatment, 2016, 57(7): 2996-3001. |
18 | Yu J F , Fu J , Cheng H , et al . Recycling of rare earth particle by mini-hydrocyclones[J]. Waste Management, 2017, 61: 362-371. |
19 | Cullivan J , Williams R , Dyakowski T , et al . New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics[J]. Minerals Engineering, 2004, 17(5): 651-660. |
20 | Xu Y , Song X , Sun Z , et al . Simulation analysis of multiphase flow and performance of hydrocyclones at different atmospheric pressures[J]. Industrial & Engineering Chemistry Research, 2011, 51(1): 443-453. |
21 | Wang L Y , Zheng Z C , Wu Y X , et al . Numerical and experimental study on liquid-solid flow in a hydrocyclone[J]. Journal of Hydrodynamics, 2009, 21(3): 408-414. |
22 | Olson T , van Ommen R . Optimizing hydrocyclone design using advanced CFD model[J]. Minerals Engineering, 2004, 17(5): 713-720. |
23 | Santos S , Jones K , Abdul R , et al . Treatment of wet process hardboard plant VOC emissions by a pilot scale biological system[J]. Biochemical Engineering Journal, 2007, 37(3): 261-270. |
24 | Guo X , Yao L S , Huang Q S . Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae[J]. Bioresource Technology, 2015, 190: 189-195. |
25 | Huang Q S , Jiang F H , Wang L Z , et al . Design of photobioreactors for mass cultivation of photosynthetic organisms[J]. Engineering, 2017, 3(3): 318-329. |
26 | Neesse T , Dueck J , Schwemmer H , et al . Using a high pressure hydrocyclone for solids classification in the submicron range[J]. Minerals Engineering, 2015, 71: 85-88. |
27 | Fan P P , Peng H T , Fan M Q . Using a permanent magnetic field to manipulate the separation effect of a dense medium cyclone[J]. Separation Science and Technology, 2016, 51(11): 1913-1923. |
28 | Yang T , Geng S J , Yang C , et al . Hydrodynamics and mass transfer in an internal airlift slurry reactor for process intensification[J]. Chemical Engineering Science, 2018, 184: 126-133. |
29 | Hwang K J , Hwang Y W , Yoshida H . Design of novel hydrocyclone for improving fine particle separation using computational fluid dynamics[J]. Chemical Engineering Science, 2013, 85: 62-68. |
30 | Mokni I , Dhaouadi H , Bournot P , et al . Numerical investigation of the effect of the cylindrical height on separation performances of uniflow hydrocyclone[J]. Chemical Engineering Science, 2015, 122: 500-513. |
31 | 刘鸿雁, 王亚, 韩天龙, 等 . 水力旋流器溢流管结构对微细颗粒分离的影响[J]. 化工学报, 2017, 68(5): 1921-1931. |
Liu H Y , Wang Y , Han T L , et al . Influence of vortex finder configurations on the separation of fine particles[J]. CIESC Journal, 2017, 68(5): 1921-1931. | |
32 | Ni L , Tian J , Zhao J . Experimental study of the effect of underflow pipe diameter on separation performance of a novel de-foulant hydrocyclone with continuous underflow and reflux function[J]. Separation and Purification Technology, 2016, 171: 270-279. |
33 | 刘鸿雁, 韩天龙, 王亚, 等 . 水力旋流器新型出口挡板结构对分离性能的影响[J]. 化工学报, 2018, 69(5): 2081-2088. |
Liu H Y , Han T L , Wang Y , et al . Influence of new outlet configurations on hydrocyclone separation performance[J]. CIESC Journal, 2018, 69(5): 2081-2088. | |
34 | Hamdy O , Bassily M A , El-Batsh H M , et al . Numerical study of the effect of changing the cyclone cone length on the gas flow field[J]. Applied Mathematical Modelling, 2017, 46: 81-97. |
35 | Monredon T , Hsieh K , Rajamani R . Fluid flow model of the hydrocyclone: an investigation of device dimensions[J]. International Journal of Mineral Processing, 1992, 35(1/2): 65-83. |
36 | Vakamalla T R , Koruprolu V B R , Arugonda R , et al . Development of novel hydrocyclone designs for improved fines classification using multiphase CFD model[J]. Separation and Purification Technology, 2017, 175: 481-497. |
37 | Chu L Y , Chen W M , Lee X Z . Effect of structural modification on hydrocyclone performance[J]. Separation and Purification Technology, 2000, 21(1/2): 71-86. |
38 | Huang A N , Ito K , Fukasawa T , et al . Classification performance analysis of a novel cyclone with a slit on the conical part by CFD simulation[J]. Separation and Purification Technology, 2018, 190: 25-32. |
39 | Mazyan W , Ahmadi A , Brinkerhoff J , et al . Enhancement of cyclone solid particle separation performance based on geometrical modification: numerical analysis[J]. Separation and Purification Technology, 2018, 191: 276-285. |
40 | 张立英, 黄青山 . 气升式环流反应器的理论研究进展[J]. 过程工程学报, 2011, 11(1): 162-173. |
Zhang L Y , Huang Q S . Research progress in the modeling theory of airlift loop reactor[J]. The Chinese Journal of Process Engineering, 2011, 11(1): 162-173. | |
41 | Huang Q S , Yang C , Yu G Z , et al . 3-D simulations of an internal airlift loop reactor using a steady two‐fluid model[J]. Chemical Engineering & Technology, 2007, 30(7): 870-879. |
42 | Huang Q S , Yang C , Yu G Z , et al . Sensitivity study on modeling an internal airlift loop reactor using a steady 2D two-fluid model[J]. Chemical Engineering & Technology, 2008, 31(12): 1790-1798. |
43 | Yang C , Mao Z S . Numerical Simulation of Multiphase Reactors with Continuous Liquid Phase[M]. Amsterdam: Academic Press, 2014. |
44 | 金国淼 . 除尘设备设计[M]. 北京: 化学工业出版社, 2002. |
Jin G M . Design of Dust Removal Equipment[M]. Beijing: Chemical Industry Press, 2002. |
[1] | 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157. |
[2] | 曾昭文, 郑成, 毛桃嫣, 魏渊, 肖润辉, 彭思玉. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(S1): 1-14. |
[3] | 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722. |
[4] | 吴君强, 蒋文明, 杜仕林, 刘杨. 水平管路水环输送稠油减阻模拟实验[J]. 化工学报, 2019, 70(5): 1734-1741. |
[5] | 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760. |
[6] | 颜建国, 朱凤岭, 郭鹏程, 罗兴锜. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787. |
[7] | 邱君君, 张小松, 李玮豪. 无霜空气源热泵系统冬季除湿性能初步实验[J]. 化工学报, 2019, 70(4): 1605-1613. |
[8] | 朱兵国, 吴新明, 张良, 孙恩慧, 张海松, 徐进良. 垂直上升管内超临界CO2 流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290. |
[9] | 朱明汉, 白鹏飞, 胡艳鑫, 黄金. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357. |
[10] | 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308. |
[11] | 梁倩卿, 马学虎, 王凯, 春江, 郝婷婷, 兰忠, 王亚雄. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281. |
[12] | 施素丽, 鹿院卫, 于强, 吴玉庭. 熔盐单罐释热过程换热器取热方式优选[J]. 化工学报, 2019, 70(3): 857-864. |
[13] | 生丽莎, 陈振乾. 静电辅助多孔液体的制备及特性研究[J]. 化工学报, 2019, 70(3): 1163-1170. |
[14] | 王瀚琳, 王德强, 王凯, 骆广生. 微反应器内苯甲醚连续合成[J]. 化工学报, 2019, 70(3): 922-928. |
[15] | 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978. |