化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1542-1549.doi: 10.11949/j.issn.0438-1157.20181367

• 能源和环境工程 • 上一篇    下一篇

煤矸石和赤泥协同提取氧化铝过程矿相转变研究

郭玉梅1,2(),曹丽琼1,郭彦霞1(),燕可洲1   

  1. 1. 山西低附加值煤基资源高值利用协同创新中心,山西大学资源与环境工程研究所,山西 太原 030006
    2. 山西煤炭职业技术学院,山西 太原 030001
  • 收稿日期:2018-11-18 修回日期:2019-01-04 出版日期:2019-04-05 发布日期:2019-01-17
  • 通讯作者: 郭彦霞 E-mail:gym641117@sohu.com;guoyx@sxu.edu.cn
  • 作者简介:<named-content content-type="corresp-name">郭玉梅</named-content>(1964—),女,副教授,<email>gym641117@sohu.com</email>|郭彦霞(1976—),女,博士,教授,<email>guoyx@sxu.edu.cn</email>
  • 基金资助:
    山西省煤基低碳科技重大专项(MC2016-05);国家重点研发计划项目(2017YFB0603101)

Mineral transformation in process of combined extraction of alumina from coal gangue and red mud

Yumei GUO1,2(),Liqiong CAO1,Yanxia GUO1(),Kezhou YAN1   

  1. 1. Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
    2. Shanxi Vocational and Technical College of Coal, Taiyuan 030001, Shanxi, China
  • Received:2018-11-18 Revised:2019-01-04 Online:2019-04-05 Published:2019-01-17
  • Contact: Yanxia GUO E-mail:gym641117@sohu.com;guoyx@sxu.edu.cn

摘要:

开展了煤矸石和赤泥协同提取氧化铝研究,考察了添加赤泥对煤矸石活化提取氧化铝及对助剂碳酸钠消耗量的影响,并利用TG-DSC和XRD研究了赤泥添加对煤矸石活化过程的影响。结果表明,“煤矸石-赤泥-Na2CO3”混合样中氧化铝的溶出率随Na/Al摩尔比和煅烧温度的增加而增加,在Al/Si摩尔比为1的条件下,当Na/Al摩尔比为1.2、煅烧温度为850℃时,混合样的氧化铝溶出率可达到91.7%,与碳酸钠直接活化煤矸石相比,碳酸钠消耗量可降低77.9%。TG-DSC和XRD的结果表明,煤矸石、赤泥以及碳酸钠在低于700℃时相互作用比较弱,在高于800℃时三者发生相互作用,赤泥的加入由于调整了样品中的Al/Si摩尔比,使反应的最终物相选择性地向Na∶Al∶Si摩尔比为1∶1∶1的霞石和沸石相转化。

关键词: 煤矸石, 赤泥, 氧化铝, 活化, 废物处理, 矿相转变

Abstract:

Combined extraction of alumina from coal gangue and red mud was studied. The effect of red mud on the alumina extraction of coal gangue and the consumption of Na2CO3 was investigated. The effect of the red mud on the activation process of coal gangue by Na2CO3 calcination was studied by way of TG-DSC and XRD. The results showed that the dissolution of alumina for the mixed “coal gangue-red mud-Na2CO3” sample increased with the Na/Al molar ratio and the calcination temperature. The alumina dissolution of the mixed sample reached 91.7% when the Na/Al molar ratio was 1.2 and the calcination temperature was 850℃ at the Al/Si molar ratio of 1. The consumption of Na2CO3 decreased 77.9% at this condition by comparison with that of coal gangue activated directly by Na2CO3. The results of TG-DSC and XRD showed that the interactions among coal gangue, red mud and Na2CO3 were weak at <700℃ and were strengthened at >800℃. The addition of red mud would make the phases in the mixed sample selectively transformed into nepheline and zeolite with a Na∶Al∶Si molar ratio of 1∶1∶1 owing to the adjustment of the Al/Si molar ratio of the sample.

Key words: coal gangue, red mud, alumina, activation, waste treatment, mineral transformation

中图分类号: 

  • TQ 17

图1

原料的XRD谱图"

表1

实验原料的化学组成"

SamplesContents/%(mass)
SiO2Al2O3Fe2O3CaOK2ONa2OTiO2Loss on ignition
coal gangue43.221.93.70.92.50.40.7621.8
red mud19.123.415.713.31.39.44.415.3

图2

“煤矸石-赤泥-Na2CO3”煅烧混合样在盐酸溶液中氧化铝的溶出率"

表2

不同Na/Al/Si摩尔比下煤矸石、赤泥和Na2CO3的用量"

Na∶Al∶Si

molar ratio

Amounts of samples/gMass percent of Na2CO3 accounting for total mass/%
CGRMNa2CO3
0.5∶1∶1100206.816.75.2
0.8∶1∶1100206.838.611.1
1∶1∶1100206.853.414.8
1.2∶1∶1100206.867.818.1
1.5∶1∶1100206.889.722.6

图3

煤矸石(a)、赤泥(b)、煤矸石-赤泥-Na2CO3混合样(c)的TG-DSC图"

图4

不同Na/Al摩尔比的“煤矸石-赤泥-Na2CO3”混合样在850℃煅烧后(a)及酸浸后(b)的XRD谱图"

图5

不同温度下“煤矸石-赤泥-Na2CO3”煅烧样(a)及酸浸渣(b)的XRD谱图"

1 国家发展改革委. 中国资源综合利用年度报告[J]. 中国经贸导刊, 2014, 30(10): 49-56.
National Development and Reform Commission. Annual report on comprehensive utilization of resources in China [J]. China Economic and Trade Guide, 2014, 30(10): 49-56.
2 田秀青, 杨凤玲, 马志斌, 等. 气氛对煤矸石中矿物质高温碳热还原反应的影响[J]. 硅酸盐通报, 2018, 37(4): 1370-1376.
TianX Q, YangF L, MaZ B, et al. Effect of atmosphere on the carbothermal reduction reaction of mineral matters in coal gangue at high temperature [J]. Bulletin of the Chinese Ceramic Society, 2018, 37(4): 1370-1376.
3 李庆文, 张向东, 李桂秀, 等. 自燃煤矸石轻骨料混凝土碳化深度研究[J]. 环境工程学报, 2016, 10(5): 2616-2620.
LiQ W, ZhangX D, LiG X, et al. Study on carbonation depth of spontaneous combustion coal gangue lightweight aggregate concrete [J]. Chinese Journal of Enviromental Engineering, 2016, 10(5): 2616-2620.
4 曹艳芝, 郭少青, 翟晋栋. 煤矸石中汞和砷的赋存形态研究[J]. 煤田地质与勘探, 2017, 45(1): 26-30.
CaoY Z, GuoS Q, ZhaiJ D. The mode of occurrence of mercury and arsenic in coal gangues [J]. Coal Geology & Exploration, 2017, 45(1): 26-30.
5 徐岩, 彭德强, 刘静宇, 等. 影响煤矸石中氧化铝浸出效果的因素探索[J]. 选煤技术, 2018, (1): 20-22.
XuY, PengD Q, LiuJ Y, et al. Study on the factors affecting the leaching-out of alumina from coal refuse[J]. Coal Preparation Technology, 2018, (1): 20-22.
6 CuiL, GuoY X, WangX M, et al. Dissolution kinetics of aluminum and iron from coal mining waste by hydrochloric acid[J]. Chinese Journal of Chemical Engineering, 2015, 23(3): 590-596.
7 QiaoX C, SiP, YuJ G. A systematic investigation into the extraction of aluminum from coal spoil through kaolinite[J]. Environmental Science & Technology, 2008, 42(22): 8541-8546.
8 刘博, 刘墨祥, 陈晓平. 用废弃煤矸石制备高比表面积的SiO2-Al2O3二元复合气凝胶[J]. 化工学报, 2017, 68(5): 2096-2104.
LiuB, LiuM X, ChenX P. Preparation of SiO2-Al2O3 composite aerogel with high specific surface area by sol-gel method from coal gangue [J]. CIESC Journal, 2017, 68(5): 2096-2104.
9 王凯功, 王飞. 煤矸石提取氧化铝技术的进展[J]. 矿产综合利用, 2018, (5): 21-24.
WangK G, WangF. Technology development of alumina extraction from coal gangue [J]. Multipurpose Utilization of Mineral Resources, 2018, (5): 21-24.
10 ChengF Q, CuiL, MillerJ D, et al. Aluminum leaching from calcined coal waste using hydrochloric acid solution[J]. Mineral Processing & Extractive Metallurgy Review, 2012, 33(6): 391-403.
11 GuoY X, YanK Z, CuiL, et al. Improved extraction of alumina from coal gangue by surface mechanically grinding modification[J]. Powder Technology, 2016, 302(11): 33-41.
12 司鹏, 乔秀臣, 于建国. 机械力化学效应对高岭石铝氧多面体的影响[J]. 武汉理工大学学报, 2011, 33(5): 22-26.
SiP, QiaoX C, YuJ G. Influence of mechanochemical effect on Al-(O, OH) polyhedron of kaolinite [J]. Journal of Wuhan University of Technology, 2011, 33(5): 22-26.
13 胡芳华, 王万绪, 杨效益, 等. 活化煤矸石离子溶出特性初探[J]. 煤炭转化, 2008, 31(4): 98-101.
HuF H, WangW X, YangX Y, et al. Ions dissolving properties of activated coal gangue [J]. Coal Conversion, 2008, 31(4): 98-101.
14 崔莉, 郭彦霞, 曹丽琼, 等. 活化煤矸石酸浸过程中金属离子的溶出[J].煤炭转化, 2016, 39(3): 86-91.
CuiL, GuoY X, CaoL Q, et al. Dissolution of metal ions from avtivated coal gangue in HCl leaching process [J]. Coal Conversion, 2016, 39(3): 86-91.
15 纪利春, 相亚军, 任根宽. 酸碱联合法从低温活化煤矸石提取硅铝铁[J]. 非金属矿, 2014, 37(3): 12-14.
JiL C, XiangY J, RenG K. Extraction of iron and aluminum and silicon from low-temperature activated coal gangue with acid and alkafi combination method [J]. Non-Metallic Mines, 2014, 37(3): 12-14.
16 GuoY X, YanK Z, LiY Y, et al. Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction [J]. International Journal of Mineral Processing, 2014, 131(10): 51-57.
17 郭彦霞, 方莉, 程芳琴, 等. 一种从粉煤灰中提取氧化铝和白炭黑的方法: 201310038565.4[P]. 2013-04-24.
GuoY X, FangL, ChengF Q, et al. A method for extracting alumina and silica from fly ash: 201310038565.4[P]. 2013-04-24.
18 程芳琴, 郭彦霞, 崔莉, 等. 利用赤泥活化处理煤矸石和/或粉煤灰的方法: 201310337154.5[P]. 2013-12-04.
ChengF Q, GuoY X, CuiL, et al. Activation method of coal gangue and / or fly ash by the addition of red mud: 201310337154.5[P]. 2013-12-04.
19 GuoY X, ZhaoQ, LiY Y, et al. Novel process for alumina extraction via the coupling treatment of coal gangue and bauxite red mud [J]. Industrial Engineering Chemistry&Research, 2014, 53(11): 4518-4521.
20 ZhouC, LiuG, YanZ, et al. Transformation behavior of mineral composition and trace elements during coal gangue combustion [J]. Fuel, 2012, 97(7): 644-650.
21 PtáčekP, ŠoukalF, OpravilT, et al. The kinetics of Al-Si spinel phase crystallization from calcined kaolin [J]. Journal of Solid State Chemistry, 2010, 183(11): 2565-2569.
22 CaoZ, CaoY D, DongH J, et al. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue [J]. International Journal of Mineral Processing, 2016, 146: 23-28.
23 PtáčekP, OpravilT, ŠoukalF, et al. The influence of structure order on the kinetics of dehydroxylation of kaolinite [J]. Journal of Europian Ceramirica Society, 2013, 33(13/14): 2793-2799.
24 LiL X, ZhangY M, ZhangY F, et al. The thermal activation process of coal gangue selected from Zhungeer in China [J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3): 1559-1566.
25 ZhangY Y, ZhangZ Z, ZhuM M, et al. Interactions of coal gangue and pine sawdust during combustion of their blends studied using differential thermogravimetric analysis [J]. Bioresource Technology, 2016, 214: 396-403.
26 WuC, LiuD. Mineral phase and physical properties of red mud calcined at different temperatures [J]. Journal of Nanomaterials, 2012, Article ID 628592.
27 Agatzini-LeonardouS, OustadakisP, TsakiridisP E, et al. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure [J]. Journal of Hazardous Material, 2008, 157(2/3): 579-586.
28 WangP, LiuD Y. Physical and chemical properties of sintering red mud and bayer red mud and the implications for beneficial utilization [J]. Materials, 2012, 5: 1800-1810.
29 ZhangN, SunH, LiuX, et al. Early-age characteristics of red mud-coal gangue cementitious material[J]. Journal of Hazardous Material, 2009, 167(1/2/3): 927-932.
30 PascualJ, CorpasF A, López-BeceiroJ, et al. Thermal characterization of a spanish red mud [J]. Journal of Thermal Analysis and Calorimetry, 2009, 96(2): 407-412.
31 AtasoyA. An investigation on characterization and thermal analysis of the aughinish red mud [J]. Journal of Thermal Analysis and Calorimetry, 2005, 81: 357-361.
[1] 王超前, 王文龙, 李哲, 孙静, 宋占龙, 赵希强, 毛岩鹏. 基于微波诱导定向加热的污泥新型热解方法能耗分析[J]. 化工学报, 2019, 70(S1): 168-176.
[2] 李学玲, 刘兴元, 赵锋, 张建强. 用DIOSO从水溶液中萃取镉的研究[J]. 化工学报, 2019, 70(4): 1464-1471.
[3] 王耀武, 彭建平, 狄跃忠, 蒿鹏程. 铝电解槽干式防渗料在电解过程中的反应机理探讨[J]. 化工学报, 2019, 70(3): 1035-1041.
[4] 翟彦昭, 蔡安江, 张栋鹏, 韩超, 李力. 基于硅硅低温直接键合的MEMS打印喷头制作工艺[J]. 化工学报, 2019, 70(3): 1220-1226.
[5] 王超, 李长明, 皇甫林, 李萍, 杨运泉, 高士秋, 余剑, 许光文. 赤泥催化剂的制备及其对模拟烟气中微量氨的脱除性能[J]. 化工学报, 2019, 70(3): 1056-1064.
[6] 汤健, 乔俊飞. 基于选择性集成核学习算法的固废焚烧过程二噁英排放浓度软测量[J]. 化工学报, 2019, 70(2): 696-706.
[7] 郑莉芳, 王兆中, 谢亚杰, 岳丽娜, 王立. γ辐照作用下GFRP热分解动力学研究[J]. 化工学报, 2018, 69(S1): 161-169.
[8] 仇雅丽, 李长明, 王德亮, 李文松, 余剑, 高士秋, 许光文. 赤泥/煤基铁炭材料的制备及其脱除废水Cr(Ⅵ)的性能[J]. 化工学报, 2018, 69(7): 3216-3225.
[9] 李海燕, 刘欢, 汪家兴, 金明灏, 邓红苹, 卢更, 张秀菊, 姚洪. 基于化学改性的脱水污泥低温热风干化特性[J]. 化工学报, 2018, 69(7): 3257-3262.
[10] 任常在, 王文龙, 李国麟, 王彪. 固废基硫铝酸盐胶凝材料用于建筑3D打印的特性与过程仿真[J]. 化工学报, 2018, 69(7): 3270-3278.
[11] 陈张豪, 马洪芳, 朱汉飞, 王晓丹, 刘鑫鑫, 许朝贵, 杨娟娟. 秸秆基碳材料在Li2SO4电解液中的电化学性能[J]. 化工学报, 2018, 69(7): 3293-3299.
[12] 王安琪, 王永良, 叶礼平, 鲁永刚, 钱鹏, 叶树峰. 响应曲面法优化氧化铜渣浮选提铜工艺[J]. 化工学报, 2018, 69(7): 3018-3028.
[13] 林晓青, 陈志良, 李晓东, 陆胜勇, 严建华. 煤粉炉掺烧生活垃圾对灰渣特性的影响研究[J]. 化工学报, 2018, 69(6): 2708-2713.
[14] 陶钧, 张继军, 毛仙鹤, 赵建伟, 张东亮, 蔡溪南. 容器内自蔓延高温合成固化过程的热力学数值模拟[J]. 化工学报, 2018, 69(5): 1846-1853.
[15] 吴俊, 全学军, 李纲, 鹿存房, 罗华政. 铬铁矿无钙焙烧渣的SO2还原解毒[J]. 化工学报, 2018, 69(4): 1678-1686.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .