化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1951-1963.doi: 10.11949/j.issn.0438-1157.20181359

• 能源和环境工程 • 上一篇    下一篇

添加剂对催化气化工艺中煤灰结渣性及气化性能影响研究

毛燕东1,2(),李克忠1(),刘雷1,辛峰2   

  1. 1. 新奥科技发展有限公司煤基低碳能源国家重点实验室, 河北 廊坊 065001
    2. 天津大学化工学院, 天津 300072
  • 收稿日期:2018-11-18 修回日期:2019-01-07 出版日期:2019-05-05 发布日期:2019-01-17
  • 通讯作者: 李克忠 E-mail:myd0514@126.com;nyyjy@enn.cn
  • 作者简介:<named-content content-type="corresp-name">毛燕东</named-content>(1984—),女,博士,高级工程师,<email>myd0514@126.com</email>|李克忠(1976—),男,博士,高级工程师,<email>nyyjy@enn.cn</email>
  • 基金资助:
    国家科技支撑计划项目(2009BAA25B00);国家重点基础研究发展计划项目(2011CB201305)

Effect of additives on ash sintering behaviors and gasification performance in catalytic coal gasification process

Yandong MAO1,2(),Kezhong LI1(),Lei LIU1,Feng XIN2   

  1. 1. State Key Laboratory of Coal-based Low Carbon Energy, ENN Technology & Development Co. Ltd., Langfang 065001, Hebei, China
    2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2018-11-18 Revised:2019-01-07 Online:2019-05-05 Published:2019-01-17
  • Contact: Kezhong LI E-mail:myd0514@126.com;nyyjy@enn.cn

摘要:

煤催化气化工艺中碱金属催化剂的引入加剧了气化炉的结渣,直接影响了流化床气化炉的正常操作。煤灰的烧结特性是流化床气化炉结渣的主要影响因素之一。通过自制的压差法烧结温度测定实验装置,并结合XRD 等分析表征及Factsage热力学软件模拟计算,考察了不同添加剂对煤灰烧结特性及气化性能的影响,并从矿物学角度探讨了添加剂对煤灰结渣特性及气化工艺的影响。结果表明,添加硅铝系添加剂可提高煤灰的烧结温度;相比硅系添加剂,添加高铝系添加剂对改善煤灰的烧结温度效果更明显;高铝系添加剂可作为一种高效的阻熔剂,但因在气化过程中容易同催化剂反应,导致催化剂催化性能降低,对煤的气化活性及催化剂回收率产生不利影响;添加氧化钙添加剂,煤的灰熔温度及烧结温度均增加,随氧化钙含量增加,灰熔点及烧结温度均升高,且对气化活性及催化剂回收率有良性作用;氧化钙可作为改善煤种结渣性的添加剂用于催化气化工艺中,需根据煤种性质及工艺特点确定适宜的添加量。

关键词: 催化气化, 烧结温度, 硅铝系添加剂, 氧化钙, 气化性能

Abstract:

The introduction of alkali metal catalyst in the coal catalytic gasification process exacerbates the slagging of the gasification furnace and directly affects the normal operation of the fluidized bed gasifier. The sintering characteristic of coal ash is one of the main factors affecting slag formation in fluidized bed gasifier. In this paper a self-made pressurized pressure-drop measuring device combining analysis of X-ray diffractometer (XRD) analyzer and simulation calculation of Factsage thermodynamic software were used to study the effects of different additives addition on sintering temperature of Wangjiata bituminous coal from Inner Mongolia and gasification performance in catalytic coal gasification process. Silicon aluminum additives improved the sintering temperature of coal ash. Compared with silicon additives, the addition of high aluminum additives had more obvious effect on improving the sintering temperature of coal ash. High aluminum additives can be used as an efficient refractory flux, but it reduced coal gasification activity and catalyst recovery rate, it was because of the reaction of additives with catalyst in gasification, and thus the catalytic performance of catalyst decreased. Addition of calcium oxide, the ash fusion temperature and sintering temperature of coal ash increased, and the coal gasification activity and catalyst recovery rate also improved. The ash melting point and sintering temperature increased with the increase of CaO content. Calcium oxide can be used as an additive to improve the slagging properties of coal in catalytic gasification process. And the additive content should be determined according to the nature of coal and the characteristics of the coal gasification process.

Key words: catalytic coal gasification, sintering temperature, silicon aluminum additive, calcium oxide, gasification performance

中图分类号: 

  • TQ 53

表1

试样煤质分析"

Sample Proximate analysis/%(mass) Ultimate analysis/%(mass) Ash fusion temperature/℃
Mad Ad Vd Cd Hd Nd Sd DT ST HT FT
WJT 10.15 6.9 32.92 71.25 4.1 0.76 0.15 1144 1264 1318 1355

表2

硅铝系添加剂成分分析"

Additive Composition/%
Al2O3 SiO2
alumina > 99
kaoline 45.68 50.76
diatomite 3.19 83.80
silicon dioxide > 99

图1

热解反应装置流程图"

图2

加压固定床评价装置流程图"

表3

试样灰熔点分析"

Sample Ash fusion temperature/℃(Reducing atmosphere)
DT ST HT FT
WJT-K 1008 1034 1076 1131
WJT-K-Al 1350 1381 1392 1420
WJT-K-Ka 1309 1342 1360 1389
WJT-K-Si 1084 1126 1183 1204
WJT-K-Di 1116 1153 1209 1231

图3

各试样Factsage初融温度计算"

图4

各硅铝系添加剂对煤灰烧结温度影响"

图5

K2O-Al2O3-SiO2 三元相图"

图6

不同试样烧结温度测定后灰渣XRD谱图"

图7

浸渍10%碳酸钾王家塔煤添加氧化铝前后700℃下热解半焦及700℃气化灰渣XRD谱图"

图8

不同阶段添加剂存在形式核磁铝谱"

表4

试样灰熔点分析"

Sample Ash fusion temperature/℃(Reducing atmosphere)
DT ST HT FT
WJT-K 1008 1034 1076 1131
WJT-K-Ca 30 1056 1083 1106 1124
WJT-K- Ca 40 1068 1119 1179 1194
WJT-K- Ca 50 1121 1238 1301 1336

图9

各试样Factsage初融温度计算"

图10

氧化钙添加剂对煤灰烧结温度影响"

图11

CaO-Al2O3-SiO2三元相图"

图12

不同试样烧结温度测定后灰渣XRD谱图"

1 焦嶕, 赵国浩, 张宝建 . 中国煤炭产业可持续发展策略: 基于系统基模的研究[J]. 经济问题, 2018, (3): 79-84.
Jiao J , Zhao G H , Zhang B J . Study on sustainable development strategy of China s coal industry — based on systems archetypes [J]. Economic Problem, 2018, (3): 79-84.
2 周利红, 于永玲 . 煤催化气化制天然气专利技术进展[J]. 当代石油石化, 2015, 23(4): 21-26.
Zhou L H , Yu Y L . The progress of patented technology in coal-based synthetic natural gas by catalytic gasification [J]. Petroleum & Petrochemical Today, 2015, 23(4): 21-26.
3 毛燕东, 毕继诚, 李金来, 等 . 一种由煤催化气化制甲烷的方法: 201010532452.6 [P]. 2010-11-02.
Mao Y D , Bi J C , Li J L , et al . A method for producing methane by catalytic gasification of coal: 201010532452.6 [P]. 2010-11-02.
4 毛燕东, 李克忠, 孙志强, 等 . 小型流化床燃煤自供热煤催化气化特性研究[J]. 高校化学工程学报, 2013, 27(5): 798-804.
Mao Y D , Li K Z , Sun Z Q , et al . Characteristics of catalytic coal gasification in lab scale auto thermal fluidized bed [J]. J. Chem. Eng. Chin. Univ., 2013, 27(5): 798-804.
5 Hippo E J , Sheth A C . Mild catalytic steam gasification process: US2007/0000177 A1 [P]. 2007-01-04.
6 毛燕东, 金亚丹, 王会芳, 等 . 煤催化气化工艺中碱金属腐蚀刚玉质耐火材料的实验研究[J]. 燃料化学学报, 2014, 42(11): 1332-1339.
Mao Y D , Jin Y D , Wang H F , et al . Experimental research on corrosions of corundum refractory by alkali metals in catalytic coal gasification process [J]. J. Fuel Chem. Technol., 2014, 42(11): 1332-1339.
7 周明灿 . 煤制天然气产业发展及技术分析[J]. 化工设计, 2017, 27(6): 7-10.
Zhou M C . Development of coal-based natural gas industry and technical analysis [J]. Chemical Engineering Design, 2017, 27(6): 7-10.
8 井云环 . 煤催化气化技术进展[J]. 当代化工, 2016, 45(6): 1273-1275.
Jing Y H . Research progress of catalytic coal gasification technology [J]. Contemporary Chemical Industry, 2016, 45(6): 1273-1275.
9 王鹏飞, 王航, 崔龙鹏, 等 . 新一代煤气化技术展望[J]. 炼油技术与工程, 2014, 44(8): 1-5.
Wang P F , Wang H , Cui L P , et al . Outlook of new generation coal gasification technologies [J]. Petroleum Refinery Engineering, 2014, 44(8): 1-5.
10 Mao Y D , Jin Y D , Li K Z , et al . Sintering characteristic in catalytic gasification of China Inner Mongolia bituminous coal ash [J]. Energy Fuels, 2016, (30): 3975-3985.
11 Schmitt V , Kaltschmitt M . Effect of straw proportion and Ca and Al-containing additives on ash composition and sintering of woodstraw pellets[J]. Fuel, 2013, 109(7): 551-558.
12 Lin W , Johansen K D , Frandsen F . Agglomeration in bio-fuel fired fluidized bed combustors [J]. Chem. Eng. J., 2003, 96(2): 171-185.
13 毛燕东, 金亚丹, 李克忠, 等 . 煤催化气化工艺中内蒙王家塔烟煤灰烧结温度的影响因素分析[J]. 化工学报, 2015, 66(3): 1080-1087.
Mao Y D , Jin Y D , Li K Z , et al . Analysis of influencing factors on sintering temperature of Inner Mongolia Wangjiata bituminous coal ash during catalytic coal gasification [J]. CIESC Journal, 2015, 66(3): 1080-1087.
14 Khan A , De J W , Jansens P , et al . Biomass combustion in fluidized bed boilers: potential problems and remedies [J]. Fuel Process Technol., 2009, 90(1): 21-50.
15 Demirbas A . Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues [J]. Prog. Energy Combust Sci., 2005, 31(2): 171-192.
16 Easterly J L , Burnham M .Overview of biomass and waste fuel resources for power production [J].Biomass Bioenergy, 1996, 10(2): 79-92.
17 Heinzel T , Siegle V , Spliethoff H , et al . Investigation of slagging in pulverized fuel co-combustion of biomass and coal at a pilot-scale test facility [J]. Fuel Process Technol., 1998, 54(1): 109-125.
18 Bartels M , Lin W G , Nijenhuis J , et al . Agglomeration in fluidized beds at high temperatures: mechanisms, detection and prevention [J]. Prog. Energy Combust. Sci., 2008, 34(5): 633-666.
19 Gupta S K , Gupta R P , Bryantg W , et al . The effect of potassium on the fusibility of coal ashes with high silica and alumina levels [J]. Fuel, 1998, 77(11): 1195-1201.
20 Al-Otoom A Y , Elliott L K , Moghtaderi B , et al . The sintering temperature of ash, agglomeration, and defluidisation in a bench scale PFBC [J]. Fuel, 2005, 84(1): 109-114.
21 Habibi R , Kopyscinski J , Masnadi M S , et al . Co-gasification of biomass and non-biomass feed stocks: synergistic and inhibition effects of switch grass mixed with sub-bituminous coal and fluid coke during CO2 gasification [J]. Energy Fuels, 2012, (27): 494-500.
22 Wang J , Sakanishi K , Saito I , et al . High-yield hydrogen production by steam gasification of hyper coal (ash-free coal extract) with potassium carbonate: comparison with raw coal [J]. Energy Fuels, 2005, (19): 2114-2120.
23 Jing N J , Wang Q H , Cheng L M , et al . The sintering behavior of coal ash under pressurized conditions [J]. Fuel, 2013, (103): 87-93.
24 毛燕东, 金亚丹, 李克忠, 等 . 煤催化气化条件下不同煤种煤灰烧结行为研究[J]. 燃料化学学报, 2015, 43(4): 402-409.
Mao Y D , Jin Y D , Li K Z , et al . Sintering behavior of different coal ashes in catalytic coal gasification process [J]. Journal of Fuel Chemistry and Technology, 2015, 43(4): 402-409.
25 Zhang J G , Li J B , Mao Y D , et al . Effect of CaCO3 addition on ash sintering behaviour during K2CO3 catalysed steam gasification of a Chinese lignite [J]. Applied Thermal Engineering, 2017, (111): 503-509.
26 Jiang M Q , Zhou R , Hu J , et al . Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char: influences of calcium species [J]. Fuel, 2012, (99): 64-71.
27 Jiang M , Hu J , Wang J . Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char: effect of hydrothermal pretreatment [J]. Fuel, 2013, (109): 14-20.
28 Song W J , Tang L H , Zhu X D , et al . Effect of coal ash composition on ash fusion temperatures [J]. Energy Fuels, 2010, (24): 182-189.
29 Li F H , Huang J J , Fang Y T . Fusibility characteristics of residual ash from lignite fluidized-bed gasification to understand its formation [J]. Energy Fuels, 2012, (26): 5020-5027.
30 Jing N J , Wang Q H , Yang Y K , et al . Influence of ash composition on the sintering behavior during pressurized combustion and gasification process [J]. Appl. Phys. Eng., 2012, 13(3): 230-238.
31 Matjie R H , French D , Ward C R , et al . Behaviour of coal mineral matter in sintering and slagging of ash during the gasification process [J]. Fuel Process. Technol., 2011, (92): 1426-1433.
32 Zhang J G , Zhang L , Yang Z Q , et al . Effect of bauxite additives on ash sintering characteristics during the K2CO3-catalyzed steam gasification of lignite [J]. RSC Adv., 2015, (5): 6720-6727.
33 姚奕竑 . 经钙基添加剂预处理煤碳酸钾催化气化研究[D]. 上海: 华东理工大学, 2008.
Yao Y H . A study on potassium-carbonate-catalyzed coal gasification by pretreatment with calcium-based additions [D]. Shanghai: East China University of Science and Technology, 2008.
34 姜明泉 . 煤焦碱金属催化水蒸气气化-产氢行为和催化剂性能的研究[D]. 上海: 华东理工大学, 2012.
Jiang M Q . The study on alkali-catalyzed gasification of coal char: behaviors of hydrogen production and performances of the catalysts [D]. Shanghai: East China University of Science and Technology, 2012.
35 王兴军, 陈凡敏, 刘海峰, 等 . 煤水蒸气气化过程中钾催化剂与矿物质的相互作用[J]. 燃料化学学报, 2013, 41(1): 9-13.
Wang X J , Chen F M , Liu H F , et al . Interaction of potassium with mineral matter in coal during steam gasification [J]. Journal of Fuel Chemistry and Technology, 2013, 41(1): 9-13.
[1] 卢尚青, 吴素芳. 纳米CaCO3孔径调控及其对碳酸化反应性能的影响[J]. 化工学报, 2018, 69(6): 2753-2758.
[2] 陈兆辉, 刘雷, 金亚丹, 吴丽锋, 武恒, 湛月平, 李克忠, 毕继诚. 高灰熔点煤的加压催化气化:K2CO3催化活性及钾回收特性[J]. 化工学报, 2017, 68(5): 2155-2161.
[3] 毛燕东, 金亚丹, 李克忠, 毕继诚, 李金来, 辛峰. 煤催化气化工艺中内蒙王家塔烟煤灰烧结温度的影响因素分析[J]. , 2015, 66(3): 1080-1087.
[4] 刘颖祖, 朱燕群, 马强, 徐超群, 王智化, 周俊虎, 岑可法. 臭氧多脱副产物亚硝酸钙的复盐沉淀试验研究[J]. 化工学报, 2014, 65(12): 4965-4970.
[5] 王俊格, 梁金花, 孙守飞, 张文飞, 任晓乾, 姜岷. 超声辅助制备酸碱双功能CaO/HMCM-22分子筛催化剂[J]. 化工学报, 2014, 65(10): 3924-3930.
[6] 张明明, 彭云湘, 汪瑾, 李平, 于建国. 三元复合钙基材料CaO-Ca3Al2O6-MgO的合成及其CO2吸附性能[J]. 化工学报, 2014, 65(1): 227-236.
[7] 何选明,方嘉淇,潘叶. Fe2O3/CaO对低阶煤低温催化干馏的影响[J]. 化工进展, 2014, 33(02): 363-367.
[8] 刘杨先, 潘剑锋, 刘勇. UV/H2O2氧化联合CaO吸收脱除NO的传质-反应动力学[J]. 化工学报, 2013, 64(3): 1062-1068.
[9] 李利军,崔 越,李青松,刘 焘,李彦青. 赤砂糖回溶糖浆的半碳法澄清脱色工艺[J]. 化工进展, 2013, 32(08): 1755-1758.
[10] 肖瑞瑞1,杨 伟1,于广锁2. 生物质半焦的催化气化动力学特性[J]. 化工进展, 2013, 32(02): 460-465.
[11] 陈彦1,2,张济宇1. 福建无烟煤Na2CO3催化气化过程的比表面变化特性[J]. 化工学报, 2012, 63(8): 2443-2452.
[12] 刘娇,孟范平,王震宇,刘启元. 亚甲基蓝光度法研究基于CaO2的Fenton反应条件 [J]. , 2011, 62(9): 2520-2526.
[13] SPAN style="FONT-FAMILY: 宋体; FONT-SIZE: 10.5pt; mso-bidi-font-size: 11.0pt; mso-ascii-font-family: Calibri; mso-ascii-theme-font: minor-latin; mso-fareast-theme-font: minor-fareast; mso-bidi-font-family: 宋体; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA">周志杰,熊杰,展秀丽,于广锁. 造纸黑液对石油焦-CO2气化的催化作用及动力学补偿效应 [J]. , 2011, 62(4): 934-939.
[14] 李 梅1,2,吕鹏梅1,肖弥彰2,杨玲梅1,罗 文1. CaO基催化剂在制备生物柴油中的应用进展 [J]. , 2010, 29(11): 2071-.
[15] 林驹;张济宇;钟雪晴.

纸浆黑液对福建无烟煤水蒸气催化气化的动力学和补偿效应

[J]. , 2009, 60(4): 905-911.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .