化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1559-1566.doi: 10.11949/j.issn.0438-1157.20181311

• 能源和环境工程 • 上一篇    下一篇

三类煤阶煤中汞的赋存形态分布特征

苏银皎1(),刘轩1,李丽锋2,李晓航1,姜平2,滕阳1,张锴1()   

  1. 1. 华北电力大学热电生产过程污染物监测与控制北京市重点实验室,北京 102206
    2. 山西河坡发电有限责任公司,山西 阳泉 045011
  • 收稿日期:2018-11-12 修回日期:2019-01-11 出版日期:2019-04-05 发布日期:2019-01-21
  • 通讯作者: 张锴 E-mail:suyinjiaosu@163.com;kzhang@ncepu.edu.cn
  • 作者简介:<named-content content-type="corresp-name">苏银皎</named-content>(1991—),女,博士研究生,<email>suyinjiaosu@163.com</email>|张锴(1968—),男,博士,教授,<email>kzhang@ncepu.edu.cn</email>
  • 基金资助:
    国家自然科学基金联合基金项目(U1610254);中央高校基本科研业务费(2017MS020, 2017MS018, 2018ZD03)

Distribution characteristics of mercury speciation in coals with three different ranks

Yinjiao SU1(),Xuan LIU1,Lifeng LI2,Xiaohang LI1,Ping JIANG2,Yang TENG1,Kai ZHANG1()   

  1. 1. Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China
    2. Shanxi Hepo Power Generation Company Limited, Yangquan 045011, Shanxi, China
  • Received:2018-11-12 Revised:2019-01-11 Online:2019-04-05 Published:2019-01-21
  • Contact: Kai ZHANG E-mail:suyinjiaosu@163.com;kzhang@ncepu.edu.cn

摘要:

采用逐级化学提取方法与程序升温热解方法研究了两个煤田三类煤阶六个样品中汞的赋存形态及其热稳定性。煤中汞分为可交换态(F1)、碳酸盐+硫酸盐+氧化物结合态(F2)、硅酸盐+硅铝酸盐结合态(F3)、硫化物结合态(F4)和残渣态(F5),其中F2、F4和F5约占煤中汞总量的90%以上,且F4是煤中汞最主要的赋存形态,占比达45.2%~82.1%。煤中汞的赋存形态与煤阶密切相关,随样品煤化程度加深F4的比例显著提高,但F2和F5逐渐降低,其原因可能是汞在煤变质过程中由碳酸盐、硫酸盐或有机物中逐渐迁移至硫化物中。煤中汞的热稳定性依赖于其赋存形态,其中F1热稳定性最差,在150℃以下全部释放;F3热稳定性最强,析出温度在600℃以上;其余三种结合态汞的释放温度界于以上两者之间,依次为F1 < F5 < F2 < F4 < F3;尽可能多地使汞转化为硫化物结合态中较为稳定的形态是煤燃烧及其相关过程液、固副产物中汞稳定化处理的有效方法之一。

关键词: 汞, 赋存形态, 煤阶, 热解, 稳定性, 浸取, 分布

Abstract:

The occurrence and thermal stability of mercury in six samples of three coal ranks in two coal fields were studied by stepwise chemical extraction method and temperature programmed pyrolysis method. The results show that mercury in coal can be divided into five fractions: exchangeable mercury (F1), carbonate+sulfate+oxide bound mercury (F2), silicate+aluminosilicate bound mercury (F3), sulfide bound mercury (F4) and residual mercury (F5). Among them, F2, F4 and F5 account for over 90%, especially F4 ranges from 45.2% to 82.1%. Mercury speciation is heavily related to coal rank in this study. The proportion of F4 is significantly increased with increasing the degree of coalification, whilst both F2 and F5 are gradually decreased, which can be inferred that mercury combined with carbonate, sulfate and organic matter transfer to the sulfide during the metamorphic process of coal. The thermal release characteristics of mercury in coal depend on its speciation. F1 has the weakest thermal stability which completely releases when the temperature is lower than 150℃, but F3 is the strongest with the release temperature above 600℃. The release temperature of the other mercury species is between F1 and F3. As a result, the order of release temperature is F1 < F5 < F2 < F4 < F3. Based on the above findings, it should be an effective method to transform mercury into much more sulfide with stable state for stabilizing mercury speciation in liquid and solid by-products of coal combustion and other related processes.

Key words: mercury, speciation, coal rank, pyrolysis, stability, leaching, distribution

中图分类号: 

  • TQ 53

表1

样品的工业分析和汞含量"

样品煤田产地工业分析/%(质量)

汞含量/

(ng/g)

MadAadVadFCad
L1

宁武煤田

朔州王坪1.1835.6727.7235.43292.6
L2朔州安太堡3.2928.2328.1840.30228.7
B1原平轩岗2.9422.5721.2353.26175.3
B2

沁水煤田

阳泉盂县1.3318.2411.5268.91138.5
A1阳泉上社1.4218.1810.2670.14186.3
A2阳泉上社1.4315.508.4974.58105.1

图1

程序升温热解实验台示意图"

图2

逐级化学提取流程示意图"

图3

三类煤阶煤中汞的热释放曲线"

图4

五种结合态汞在三类煤阶煤中的分布特征"

图5

五种结合态汞的热释放谱图"

1 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2017.
National Bureau of Statistics of the People s Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2017.
2 刘慧敏, 王春波, 张月, 等. 温度和赋存形态对燃煤过程中砷迁移和释放的影响[J]. 化工学报, 2015, 66(11): 4643-4651.
LiuH M, WangC B, ZhangY, et al. Effect of temperature and occurrence form of arsenic on its migration and volatilization during coal combustion[J]. CIESC Journal, 2015, 66(11): 4643-4651.
3 周劲松, 齐攀, 侯文慧, 等. 纳米氧化锌在模拟煤气下吸附单质汞的实验研究[J]. 燃料化学学报, 2013, 41(11): 1371-1377.
ZhouJ S, QiP, HouW H, et al. Elemental mercury removal from syngas by nano-ZnO sorbent[J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1371-1377.
4 郭瑞霞, 杨建丽, 刘东艳, 等. 热处理条件对大同煤中微量有害元素变迁规律的影响[J]. 化工学报, 2003, 54(11): 1603-1607.
GuoR X, YangJ L, LiuD Y, et al. Influence of thermal of treatment conditions on transformation of trace elements in Datong coal[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(11): 1603-1607.
5 魏绍青, 滕阳, 李晓航, 等. 300 MW等级燃煤机组煤粉炉与循环流化床锅炉汞排放特性比较[J]. 燃料化学学报, 2017, 45(8): 1009-1016.
WeiS Q, TengY, LiX H, et al. Comparison of mercury emission from around 300 MW coal-fired power generation units between pulverized boiler and circulating fluidized-bed boiler[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 1009-1016.
6 ZhaoH T, YangG, GaoX, et al. Hg0-temperature-programmed surface reaction and its application on the investigation of metal oxides for Hg0 capture[J]. Fuel, 2016, 181: 1089-1094.
7 ZhuY C, HanX J, HuangZ G, et al. Superior activity of CeO2 modified V2O5/AC catalyst for mercury removal at low temperature[J]. Chemical Engineering Journal, 2018, 337: 741-749.
8 李洋, 陈敏东, 薛志钢, 等. 燃煤电厂协同脱汞研究进展及强化措施[J]. 化工进展, 2014, 33(8): 2187-2191.
LiY, ChenM D, XueZ G, et al. Research on synergistic mercury removal of coal-fired power plants[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 2187-2191.
9 ChengC M, CaoY, ZhangK, et al. Co-effects of sulfur dioxide load and oxidation air on mercury re-emission in forced-oxidation limestone flue gas desulfurization wet scrubber[J]. Fuel, 2013, 106: 505-511.
10 GeraldH L, JaisenN K, RoeH Y. An evaluation of coal preparation technologies for controlling trace element emissions[J]. Fuel Processing Technology, 2000, 60(3): 407-422.
11 LopezA A M, DiazS M, GarciaA B, et al. Evaluation of mercury associations in two coals of different rank using physical separation procedures[J]. Fuel, 2006, 85(10): 1389-1395.
12 DiehlS F, GoldhaberM B, HatchJ R. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama[J]. Journal of Coal Geology, 2004, 59(3): 193-208.
13 MichaelE B, RonaldH A, JamesD C, et al. Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No.1 mine, King County, Washington, USA[J]. International Journal of Coal Geology, 2005, 63(3/4): 247-275.
14 罗小雨, 苏胜, 向军, 等. 汞在MnOx-CeO2/γ-Al2O3催化剂表面的赋存形态分析[J]. 化工学报, 2015, 66(6): 2082-2088.
LuoX Y, SuS, XiangJ, et al. Speciation of mercury formed on MnOx-CeO2/γ-Al2O3 catalyst surface[J]. CIESC Journal, 2015, 66(6): 2082-2088.
15 RumayorM, GsllegoJ R, RodriguezV E, et al. An assessment of the environmental fate of mercury species in highly polluted brownfields by means of thermal desorption[J]. Journal of Hazardous Materials, 2017, 325: 1-7.
16 FengX B, LuJ Y, GregoireD C, et al. Analysis of inorganic mercury species associated with airborne particulate matter/aerosols: method development[J]. Analytical and Bioanalytical Chemistry, 2004, 380(4): 683-689.
17 HaraldB, StefanoC, StefanoC. Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija mercury mine[J]. Environment Science Technology, 2000, 34(6): 2330-2336.
18 StrezovV, EvansT J, ZiolkowskiA, et al. Mode of occurrence and thermal stability of mercury in coal[J]. Energy and Fuels, 2010, 24(1): 53-57.
19 UruskiL, GoreckiJ, MacherzynskiM, et al. The ability of Polish coals to release mercury in the process of thermal treatment[J]. Fuel Processing Technology, 2015, 140: 12-20.
20 ZhengL G, LiuG J, QiC C, et al. The use of sequential extraction to determine the distribution and modes of occurrence of mercury in Permian Huaibei coal, Anhui Province, China[J]. International Journal of Coal Geology, 2008, 73(2): 139-155.
21 Method 29 — Determination of Metals Emissions from Stationary Sources[S]. United States: United States Environmental Protection Agency, 2009.
22 TessierP, BissonM. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
23 PalmerC A, MroczkowskiS J, FinkelmanR B, et al. The use of sequential leaching to quantify the modes of occurrence of elements in coal[C]// Pittsburgh Coal Conference. Pittsburgh, PA, United States, 1998.
24 PanyametheekulS. An operationally defined method to determine the speciation of mercury[J]. Environmental Geochemistry and Health, 2004, 26(1): 51-57.
25 LopezA A M, YuanY, PerryR, et al. Analysis of mercury species present during coal combustion by thermal desorption[J]. Fuel, 2010, 89(3): 629-634.
26 LuoG Q, YaoH, XuM H, et al. Identifying modes of occurrence of mercury in coal by temperature programmed pyrolysis[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2763-2769.
27 郭少青, 杨建丽, 刘振宇. 晋城煤中汞的热稳定性与赋存形态的研究[J]. 燃料化学学报, 2009, 37(1): 115-118.
GuoS Q, YangJ L, LiuZ Y. Thermal stability and occurrence of forms of mercury in Jincheng coal[J]. Journal of Fuel Chemistry and Technology, 2009, 37(1): 115-118.
28 赵峰华. 煤中有害微量元素分布赋存机制及燃煤产物淋滤实验研究[D]. 北京: 中国矿业大学, 1997.
ZhaoF H. Study on the mechanism of distributions and occurrences of hazardous minor and trace elements in coal and leaching experiments of coal combustion residues[D]. Beijing: China University of Mining & Technology, 1997.
29 吴辉. 燃煤汞释放及转化的实验与机理研究[D]. 武汉: 华中科技大学, 2011.
WuH. Experimental and mechanism study on mercury emission and transformation during coal combustion[D]. Wuhan: Huazhong University of Science & Technology, 2011.
30 CláudiaC W, RolfD W, WilsonD F. Mercury speciation in contaminated soils by thermal release analysis[J]. Water, Air and Soil Pollution, 1996, 89: 399-416.
31 FinkelmanR B. Modes of occurrence of potentially hazardous elements in coal: levels of confidence[J]. Fuel Processing Technology, 1994, 39(1/2/3): 21-34.
[1] 马密霞, 秦宁, 闵清, 胡文祥. 微波超声波联用萃取白藜芦醇及其苷的HPLC测定[J]. 化工学报, 2019, 70(S1): 124-129.
[2] 王超前, 王文龙, 李哲, 孙静, 宋占龙, 赵希强, 毛岩鹏. 基于微波诱导定向加热的污泥新型热解方法能耗分析[J]. 化工学报, 2019, 70(S1): 168-176.
[3] 徐胜, 刘玲利, 曹锰, 张尚玺, 戴欣, 柳阳, 王振希. PVA/ZnO复合材料“骨架支撑”型孔道构建及铅离子吸附[J]. 化工学报, 2019, 70(S1): 130-140.
[4] 李兵, 杨义, 刘作华, 陶长元, 谷德银, 许传林, 王运东. 湿法磷酸固-液体系混沌混合与浸出强化行为[J]. 化工学报, 2019, 70(5): 1742-1749.
[5] 洪迪昆, 操政, 杨昌敏, 刘亮, 郭欣. 钙催化苯酚反应的分子动力学模拟[J]. 化工学报, 2019, 70(5): 1788-1794.
[6] 李霏, 杨翠丽, 李文静, 乔俊飞. 基于均匀分布NSGAII算法的污水处理多目标优化控制[J]. 化工学报, 2019, 70(5): 1868-1878.
[7] 魏砾宏, 郭良振, 蒋进元, 刘美佳, 杨天华. Fe2O3对甘氨酸热解特性及氮转化的影响[J]. 化工学报, 2019, 70(5): 1942-1950.
[8] 周麟晨, 孙志高, 陆玲, 王赛, 李娟, 李翠敏. 有机相变乳液中HCFC–141b水合物生成及稳定性[J]. 化工学报, 2019, 70(5): 1674-1681.
[9] 安东海, 韩晓林, 程星星, 周滨选, 郑瑛, 董勇. 不同烟气组分对粉状活性焦吸附汞的影响机理[J]. 化工学报, 2019, 70(4): 1575-1582.
[10] 梁文胜, 刘江涛, 赵月, 黄伟, 左志军. NiO和Ni催化剂对苯甲酸热解机理的理论计算[J]. 化工学报, 2019, 70(4): 1429-1435.
[11] 王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271.
[12] 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
[13] 李晓航, 刘芸, 苏银皎, 滕阳, 关彦军, 张锴. 煤粉炉和循环流化床锅炉飞灰特性对其汞吸附能力的影响[J]. 化工学报, 2019, 70(3): 1075-1082.
[14] 徐奇超, 江锦波, 彭旭东, 李纪云, 王玉明. 基于遗传算法的干气密封双向槽统一模型与参数优化[J]. 化工学报, 2019, 70(3): 995-1005.
[15] 鲁春燕, 李炜. 基于深度置信网络的炼化空压机故障诊断方法[J]. 化工学报, 2019, 70(2): 757-763.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .