化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1674-1681.doi: 10.11949/j.issn.0438-1157.20181289

• 热力学 • 上一篇    下一篇

有机相变乳液中HCFC–141b水合物生成及稳定性

周麟晨(),孙志高(),陆玲,王赛,李娟,李翠敏   

  1. 苏州科技大学环境科学与工程学院,江苏 苏州 215009
  • 收稿日期:2018-11-02 修回日期:2019-01-15 出版日期:2019-05-05 发布日期:2019-05-10
  • 通讯作者: 孙志高 E-mail:963443807@qq.com;szg.yzu@163.com
  • 作者简介:<named-content content-type="corresp-name">周麟晨</named-content>(1995—),男,硕士研究生,<email>963443807@qq.com</email>|孙志高(1966—),男,博士,教授,<email>szg.yzu@163.com</email>
  • 基金资助:
    江苏省高校自然科学研究重大项目(16KJA480001);江苏省自然科学基金项目(BK20170382);住建部科技项目(2018-k1-011);苏州市科技计划项目(SNG2018048);江苏省研究生科研创新计划项目(SJCX18_0873);苏州科技大学研究生科研创新计划项目(SKSJ18_006)

Formation and stability of HCFC–141b hydrate in organic phase change emulsion

Linchen ZHOU(),Zhigao SUN(),Ling LU,Sai WANG,Juan LI,Cuimin LI   

  1. School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
  • Received:2018-11-02 Revised:2019-01-15 Online:2019-05-05 Published:2019-05-10
  • Contact: Zhigao SUN E-mail:963443807@qq.com;szg.yzu@163.com

摘要:

为了促进水合物形成,在HCFC–141b、有机相变材料(正癸酸和十二醇)和水体系中添加表面活性剂Tween 80和Span 80作为乳化剂,采用高速搅拌的方法制备了有机相变材料-表面活性剂-制冷剂-水乳液体系,增大水分子与制冷剂的接触面积。实验研究了静态条件下有机相变材料和表面活性剂添加量对水合物形成的影响。研究结果表明添加乳化剂可以有效提高水合物的蓄冷量,减少水合物形成诱导时间,降低水合物生成的随机性;温度越低,水合物促进效果越好。水合物生成/分解循环实验表明,添加Tween 80的乳液体系的稳定性好,有机相变乳液提高了水合物生成/分解循环过程的稳定性。

关键词: 水合物, 表面活性剂, HCFC–141b, 蓄冷, 相变, 乳液, 稳定性, 诱导时间

Abstract:

To promote the hydrate formation, surfactants Tween 80 and Span 80 are added as emulsifiers in HCFC-141b, organic phase change materials (n-decanoic acid and dodecyl alcohol) and water system. Organic phase change material-surfactant-refrigerant aqueous emulsion is prepared by high-speed stirring. Emulsion increases the contact area of water and HCFC–141b. The effects of organic phase change materials and surfactants on the formation of hydrates are investigated experimentally under static conditions. The results show that emulsifier can effectively increase the cold storage capacity of hydrate, reduce the induction time of hydrate formation, and reduce the randomness of hydrate formation. The lower the temperature of emulsion systems, the better hydrate promotion effect. The hydrate formation/decomposition cycle experiments show that the emulsion system with Tween 80 has good stability, and the organic phase change emulsion improves the stability during the hydrate formation/decomposition cycle.

Key words: hydrate, surfactant, HCFC–141b, cold storage, phase change, emulsion, stability, induction time

中图分类号: 

  • TK 02

图1

水合物形成实验装置"

表1

实验体系"

实验编号 添加剂/%(mass) 实验温度/℃
E1 1%CA–DE 0.2
E2 1%CA–DE+0.5%Tween 80 0.2
E3 1%CA–DE+1%Tween 80 0.2
E4 1%CA–DE+2%Tween 80 0.2
E5 1%CA–DE+3%Tween 80 0.2
E6 1%CA–DE+5%Tween 80 0.2
E7 2%CA–DE+1%Tween 80 0.2
E8 3%CA–DE+1%Tween 80 0.2
E9 1%CA–DE+0.1%Span 80 0.2
E10 1%CA–DE+0.5%Span 80 0.2
E11 1%CA-DE+1%Span 80 0.2
E12 1%CA–DE+1%Tween80+0.1%Span 80 0.2
E13 1%CA–DE+1%Tween80+0.5%Span 80 0.2
E14 1%CA–DE+1%Tween80+1%Span 80 0.2
E15 1%CA–DE+1%Tween 80 1
E16 1%CA–DE+1%Tween 80 3

图2

两种乳液体系稳定性的对比"

表2

水合物生成诱导时间"

实验编号 实验温度/℃ 诱导时间/min 平均诱导时间/min

诱导时间

标准方差

E1 0.2 113,88,173 125 35.67
E2 0.2 28,42,121 64 40.94
E3 0.2 25,11,42 26 12.68
E4 0.2 71,150,201 141 53.48
E5 0.2 324,338,256 306 35.81
E6 0.2 467,621,436 508 80.90
E7 0.2 23,78,65 55 23.47
E8 0.2 115,116,76 102 18.62
E9 0.2 25,142,72 80 48.07
E10 0.2 45,17,56 39 16.42
E11 0.2 120,55,62 79 29.13
E12 0.2 40,69,76 62 15.58
E13 0.2 76,110,45 77 26.55
E14 0.2 26,158,254 146 93.47
E15 1 119,44,105 89 32.56
E16 3 127,212,312 217 75.61

图3

水合物生成过程"

图4

温度对水合物生成的影响"

图5

表面活性剂对水合物分解热的影响"

图6

乳液体系循环稳定性对比"

表3

水合物循环实验对结晶温度的影响"

实验编号 结晶温度/℃
第一次 第二次 第三次 第四次 第五次 第六次
E1 0.25 1.67 0.48 0.27 0.26 0.25
E3 0.25 4.49 4.26 4.17 3.65 3.82
E10 0.22 2.67 2.73 2.96 2.27 1.44
E12 0.24 3.73 3.70 3.62 3.45 2.96
1 谢应明, 魏晶晶, 刘道平, 等 . 四丁基氯化铵水合物的蓄冷特性[J]. 化工学报, 2010, 61(S2): 77-80.
Xie Y M , Wei J J , Liu D P , et al . The cold storage characteristics of tetrabutylammonium chloride hydrate [J]. CIESC Journal, 2010, 61(S2): 77-80.
2 Akiya T , Shimazaki T , Oowa M , et al . Formation conditions of clathrates between HFC alternative refrigerants and water [J]. International Journal of Thermophysics, 1999, 20(6): 1753-1763.
3 陈晶贵, 樊栓狮, 梁德青, 等 . HCFC–141b水合物空调蓄冷系统实验研究[J]. 化工学报, 2003, 54(S1): 125-130.
Chen J G , Fan S S , Liang D Q , et al . Experimental study on HCFC– 141b hydrate air conditioning cold storage system [J]. Journal of Chemical Industry and Engineering (China), 2003, 54(S1): 125-130.
4 郝文峰, 樊栓狮, 王金渠 . 搅拌对甲烷水合物生成的影响[J]. 天然气化工(C1化学与化工), 2005, 30(3): 5-7.
Hao W F , Fan S S , Wang J Q . Effects of stirring on the formation of methane hydrate [J]. Natural Gas Chemical Industry (C1 Chemistry and Chemical Engineering), 2005, 30(3): 5-7.
5 Ohmura R , Kashiwazaki S , Shiota S , et al . Structure-I and structure-H hydrate formation using water spraying [J]. Energy & Fuels, 2002, 16(5): 1141-1147.
6 Xu C G , Li X S , Lv Q N , et al . Hydrate-based CO2 (carbon dioxide) capture from IGCC (integrated gasification combined cycle) synthesis gas using bubble method with a set of visual equipment [J]. Energy, 2012, 44(1): 358-366.
7 Fesenko E E , Popov V I , Novikov V V , et al . Structure formation in water by the action of weak magnetic fields and xenon. Electron microscopy analysis [J]. Biofizika, 2002, 47(3): 393-394.
8 刘永红, 郭开华, 梁德青, 等 . 超声波作用下的制冷剂水合物结晶过程研究[J]. 工程热物理学报, 2003, 24(3): 385-387.
Liu Y H , Guo K H , Liang D Q , et al . Crystallization process of refrigerant hydrate under ultrasonic wave [J]. Journal of Engineering Thermophysics, 2003, 24(3): 385-387.
9 马鸿凯, 孙志高, 焦丽君, 等 . 添加剂对静态条件下HCFC–141b水合物生成的促进作用[J]. 制冷学报, 2016, 37(1): 101-105.
Ma H K , Sun Z G , Jiao L J , et al . Promoting effect of additives on the formation of HCFC–141b hydrate under static conditions [J]. Journal of Refrigeration, 2016, 37 (1): 101-105.
10 Moraveji M K , Ghaffarkhah A , Sadeghi A . Effect of three representative surfactants on experimental and theoretical investigation of methane hydrate induction methane hydrate formation rate and induction time [J]. Egyptian Journal of Petroleum, 2016, 26(2): 331-339.
11 徐勇军, 叶国兴, 杨晓西, 等 . 表面活性剂对水合物生成的影响及其应用前景[J]. 天然气工业, 2002, 22(1): 85-87.
Xu Y J , Ye G X , Yang X X , et al . Effect of surfactants on hydrate formation and its application prospects [J]. Natural Gas Industry, 2002, 22(1): 85-87.
12 章春笋, 樊栓狮, 郭彦坤, 等 . 不同类型表面活性剂对天然气水合物形成过程的影响[J]. 天然气工业, 2003, 23(1): 91-95.
Zhang C S , Fan S S , Guo Y K , et al . Effects of different types of surfactants on the formation of natural gas hydrates [J]. Natural Gas Industry, 2003, 23(1): 91-95.
13 Rahmati M , Manteghian M , Pahlavanzadeh H . Experimental and theoretical investigation of methane hydrate induction time in the presence of triangular silver nanoparticles [J]. Chemical Engineering Research & Design, 2017, 120: 325-332.
14 周诗岽, 余益松, 甘作全, 等 . 纳米石墨颗粒对气体水合物生成诱导时间的影响[J]. 天然气化工, 2015, 40(1): 60-64.
Zhou S Z , Yu Y S , Gan Z Q , et al . Influence of nanographite particles on gas hydrate formation induction time [J]. Natural Gas Chemical Industry, 2015, 40(1): 60-64.
15 Wang Y H , Lang X M , Fan S S . Accelerated nucleation of tetrahydrofuran (THF) hydrate in presence of ZIF-61 [J]. Journal of Energy Chemistry, 2012, 21(3): 299-301.
16 李娜, 马振魁 . 利用纳米粒子强化微乳液体系HCFC–141b水合物的生成[J]. 科学通报, 2011, 56(22): 1846-1853.
Li N , Ma Z K . Generation of HCFC–141b hydrate by microparticle-enhanced microemulsion system [J]. Chinese Science Bulletin, 2011, 56(22): 1846-1853.
17 Long F , Fan S S , Wan Y H , et al . Promoting effect of super absorbent polymer on hydrate formation [J]. Journal of Energy Chemistry, 2010, 19(3): 251-254.
18 胡亚飞, 蔡晶, 李小森 . 环戊烷-甲烷水合物生成过程的温度特性[J]. 化工进展, 2016, 35(5): 1418-1427.
Hu Y F , Cai J , Li X S . Temperature characteristics of cyclopentane-methane hydrate formation process [J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1418-1427.
19 Wang M , Sun Z G , Qiu X H , et al . Hydrate dissociation equilibrium conditions for carbon dioxide + tetrahydrofuran [J]. Journal of Chemical & Engineering Data, 2017, 62(2): 812-815.
20 Sabil K M , Duarte A R C , Zevenbergen J , et al . Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution [J]. International Journal of Greenhouse Gas Control, 2010, 4(5): 798-805.
21 朱明贵, 孙志高, 杨明明, 等 . 有机相变材料促进HCFC–141b水合物生成实验[J]. 化工进展, 2017, 36(4): 1265-1269.
Zhu M G , Sun Z G , Yang M M , et al . Experimental study on the formation of HCFC–141b hydrate by organic phase change materials [J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1265-1269.
22 Chen B , Xin F , Song X , et al . Kinetics of carbon dioxide hydration enhanced by phase change slurry of n-tetradecane [J]. Energy & Fuels, 2017, 31(4): 4245-4254.
23 陈彬, 辛峰, 宋小飞, 等 . 相变浆液中甲烷水合物的生成过程强化[J]. 化工学报, 2016, 67(8): 3202-3208.
Chen B , Xin F , Song X F , et al . Strengthening process of methane hydrate formation in phase change slurry [J]. CIESC Journal, 2016, 67(8): 3202-3208.
24 Nakajima M , Ohmura R , Mori Y H . Clathrate hydrate formation from cyclopentane-in-water emulsions [J]. Industrial & Engineering Chemistry Research, 2015, 47(22): 8933-8939.
25 周锡堂, 樊栓狮, 梁德青, 等 . HCFC–141b乳化液生成气体水合物[J]. 化工学报, 2007, 58(3): 728-732.
Zhou X T , Fan S S , Liang D Q , et al . Gas hydrate formation by HCFC–141b emulsion [J]. Journal of Chemical Industry and Engineering (China), 2007, 58(3): 728-732.
26 李璞, 张龙明, 覃小焕, 等 . 微乳液中R141b水合物快速生成实验研究[J]. 工程热物理学报, 2014, 35(12): 2358-2362.
Li P , Zhang L M , Qin X H , et al . Experimental study on rapid formation of R141b hydrate in microemulsion [J]. Journal of Engineering Thermophysics, 2014, 35 (12): 2358-2362.
27 赵国玺, 朱㻉瑶 . 表面活性剂作用原理[M]. 北京: 中国轻工业出版社, 2003: 38-39.
Zhao G X , Zhu Y Y . Principle of Surfactant Action [M]. Beijing: China Light Industry Press, 2003: 38-39.
28 杜建伟, 梁德青, 戴兴学, 等 . Span80促进甲烷水合物生成动力学研究[J]. 工程热物理学报, 2011, 32(2): 197-200.
Du J W , Liang D Q , Dai X X , et al . Investigation on Span80 promoting methane hydrate formation kinetic [J]. Journal of Engineering Thermophysics, 2011, 32(2): 197-200.
29 孙建华, 吴强, 张保勇 . 非离子型吐温系列表面活性剂对瓦斯水合物生成过程的影响[J]. 煤炭学报, 2006,(2): 191-195.
Sun J H , Wu Q , Zhang B Y . Effect of nonionic surfactant Tween on the process of gas hydrate formation [J]. Journal of China Coal Society, 2006, (2): 191-195.
30 Nourafkan E . Evaluation of adsorption of nonionic surfactants blend at water/oil interfaces [J]. Journal of Dispersion Science & Technology, 2017, 39(5): 665-675.
31 Barakat Y , Fortney L N , Schechter R S , et al . Criteria for structuring surfactants to maximize solubilization of oil and water(Ⅱ): Alkyl benzene sodium sulfonates [J]. Journal of Colloid & Interface Science, 1983, 92(2): 561-574.
32 Kaciev D . Nucleation: Basic Theory with Applications [M].Oxford: Butterworth Heinemann, 2000.
33 Davies S R , Hester K C , Lachance J W , et al . Studies of hydrate nucleation with high pressure differential scanning calorimetry [J]. Chemical Engineering Science, 2009, 64(2): 370-375.
34 李刚, 谢应明, 刘道平, 等 . 四丁基溴化铵-四氢呋喃系蓄冷水合物[J]. 过程工程学报, 2009, 9(1): 186-189.
Li G , Xie Y M , Liu D P , et al . Tetrabutylammonium bromide-tetrahydrofuran cold storage hydrate [J]. Chinese Journal of Process Engineering, 2009, 9(1): 186-189.
35 Ohmura R , Ogawa M , Yasuoka A , et al . Statistical study of clathrate-hydrate nucleation in a water/hydrochlorofluorocarbon system:  search for the nature of the “Memory Effect” [J]. Journal of Physical Chemistry B, 2003, 107(22): 5289-5293.
[1] 彭思玉, 郑成, 毛桃嫣, 魏渊, 宋华峰. 双十八烷基四羟乙基二溴丙二铵的微波合成及其性能研究[J]. 化工学报, 2019, 70(S1): 202-210.
[2] 陈燕饶, 毛桃嫣, 郑成. 双十八烷基二羟乙基溴化铵的微波合成及性能[J]. 化工学报, 2019, 70(S1): 226-234.
[3] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[4] 徐胜, 刘玲利, 曹锰, 张尚玺, 戴欣, 柳阳, 王振希. PVA/ZnO复合材料“骨架支撑”型孔道构建及铅离子吸附[J]. 化工学报, 2019, 70(S1): 130-140.
[5] 秦宁, 闵清, 邵开元, 胡文祥. 间甲基苯甲脒盐酸盐的合成研究[J]. 化工学报, 2019, 70(S1): 242-247.
[6] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[7] 王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271.
[8] 高强, 吕洪, 熊凡, 陈飞, 杨则恒, 张卫新. 片状LiFePO4/C正极材料制备及其电化学性能研究[J]. 化工学报, 2019, 70(4): 1628-1634.
[9] 苏银皎, 刘轩, 李丽锋, 李晓航, 姜平, 滕阳, 张锴. 三类煤阶煤中汞的赋存形态分布特征[J]. 化工学报, 2019, 70(4): 1559-1566.
[10] 袁子怡, 樊华, 侯得印, 王凯, 王军. 十二烷基硫酸钠对膜蒸馏过程影响[J]. 化工学报, 2019, 70(4): 1455-1463.
[11] 牟帅, 赵长颖, 徐治国. 局部表面改性紫铜方柱阵列池沸腾传热特性和机理[J]. 化工学报, 2019, 70(4): 1291-1301.
[12] 王舜浩, 朱文俐, 胡正根, 周芮, 余柳, 王彬, 张小斌. 液氢缩比贮箱蒸发特性数值模拟及实验验证[J]. 化工学报, 2019, 70(3): 840-849.
[13] 王耀武, 彭建平, 狄跃忠, 蒿鹏程. 铝电解槽干式防渗料在电解过程中的反应机理探讨[J]. 化工学报, 2019, 70(3): 1035-1041.
[14] 曹小雪, 吉绍长, 匡雯婕, 廖安平, 蓝平, 张金彦. 阿奇霉素二水合物在水-有机溶剂中溶解度及三元相图测定[J]. 化工学报, 2019, 70(3): 817-829.
[15] 徐奇超, 江锦波, 彭旭东, 李纪云, 王玉明. 基于遗传算法的干气密封双向槽统一模型与参数优化[J]. 化工学报, 2019, 70(3): 995-1005.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .