化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1734-1741.doi: 10.11949/j.issn.0438-1157.20181285
Junqiang WU1,2(),Wenming JIANG1,2(
),Shilin DU3,Yang LIU1,2
摘要:
随着石油开采的增加,黏度较大的稠油输送受到越来越多的关注。基于自主设计的两相流水环输送稠油实验系统,模拟并开展了水环输送稠油实验。拍摄了水环发生器在不同间隙尺寸下的流动流型,分析了不同实验条件下的水环输送稠油减阻效果。结果表明:水环输送可以大大降低管道输送过程中压降;结合实验和模拟,水环发生器间隙尺寸在0.9~1.4 mm时,水环的减阻效果最好;流速增加会增大单位管道上的压降,降低水环输送的减阻效果。
中图分类号:
1 | Xing X , Wang X , Pan H , et al . Fe/graphene nanocomposite as a catalyst for the viscosity reduction of heavy crude oil[J]. Petroleum Science & Technology, 2015, 33(20): 1742-1748. |
2 | 马文鑫, 李岩, 申龙涉, 等 . 超稠油水膜面减阻输送技术的数值模拟[J]. 辽宁石油化工大学学报, 2011, 31(3): 38-41. |
Ma W X , Li Y , Shen L S , et al . Numerical simulation of water film drag-reduction transport of super heavy oil[J]. Journal of Liaoning Shihua University, 2011, 31(3): 38-41. | |
3 | 段林林, 敬加强, 周艳杰, 等 . 稠油降黏集输方法综述[J]. 管道技术与设备, 2009, 32(5): 15-18. |
Duan L L , Jing J Q , Zhou Y J , et al . A review of the method of viscous oil reduction[J]. Pipeline Technique and Equipment, 2009, 32(5): 15-18. | |
4 | 敬加强, 孙杰, 赵红艳, 等 . 稠油流动边界层水基泡沫减阻模拟[J]. 化工学报, 2014, 65(11): 4301-4308. |
Jing J Q , Sun J , Zhao H Y , et al . Simulation of drag reduction of aqueous foam on heavy oil flow boundary layer[J]. CIESC Journal, 2014, 65(11): 4301-4308. | |
5 | Mcmillen J M . Combined thermal and solvent stimulation: US4519454[P]. 1985. |
6 | 兰文杰, 李少伟, 徐建鸿, 等 . 同轴环管微流控设备内液-液两相黏性流体的流动规律[J]. 化工学报, 2013, 64(2): 476-483. |
Lan W J , Li S W , Xu J H , et al . The flow law of liquid-liquid two-phase viscous fluid in a coaxial loop microfluidic device[J]. CIESC Journal, 2013, 64(2): 476-483. | |
7 | Dove I J , Buckner S J . Method of piping fluids: US0759374[P]. 1904. |
8 | Bannwart A C . Modeling aspects of oil-water core-annular flows[J]. Journal of Petroleum Science & Engineering, 2001, 32(2/3/4): 127-143. |
9 | Ghosh S , Mandal T K , Das G , et al . Review of oil water core annular flow[J]. Renewable & Sustainable Energy Reviews, 2009, 13(8): 1957-1965. |
10 | And D D J , Bai R , Chen K P , et al . Core-annular flows[J]. Annual Review of Fluid Mechanics, 1997, 29(1): 65-90. |
11 | Bannwart A C . Wavespeed and volumetric fraction in core annular flow[J]. International Journal of Multiphase Flow, 1998, 24(6): 961-974. |
12 | Silva R C R D , Mohamed R S , Bannwart A C . Wettability alteration of internal surfaces of pipelines for use in the transportation of heavy oil via core-flow[J]. Journal of Petroleum Science & Engineering, 2006, 51(1): 17-25. |
13 | Rodriguez O M H , Bannwart A C . Analytical model for interfacial waves in vertical core flow[J]. Journal of Petroleum Science & Engineering, 2006, 54(3): 173-182. |
14 | Rodriguez O M H , Bannwart A C . Experimental study on interfacial waves in vertical core flow[J]. Journal of Petroleum Science & Engineering, 2006, 54(3/4): 140-148. |
15 | Rodriguez O M H , Bannwart A C . Stability analysis of core-annular flow and neutral stability wave number[J]. AIChE Journal, 2008, 54(1): 20-31. |
16 | Grassi B , Strazza D , Poesio P . Experimental validation of theoretical models in two-phase high-viscosity ratio liquid-liquid flows in horizontal and slightly inclined pipes[J]. International Journal of Multiphase Flow, 2008, 34(10): 950-965. |
17 | Pillai D S , Dinesh B , Sundararajan T , et al . A viscous potential flow model for core-annular flow[J]. Applied Mathematical Modelling, 2016, 40(7/8): 5044-5062. |
18 | Balakhrisna T , Ghosh S , Das G , et al . Oil-water flows through sudden contraction and expansion in a horizontal pipe—phase distribution and pressure drop[J]. International Journal of Multiphase Flow, 2010, 36(1): 13-24. |
19 | Ghosh S , Das G , Das P K . Simulation of core annular downflow through CFD—a comprehensive study[J]. Chemical Engineering & Processing Process Intensification, 2010, 49(11): 1222-1228. |
20 | Kaushik V V R , Ghosh S , Das G , et al . CFD simulation of core annular flow through sudden contraction and expansion[J]. Journal of Petroleum Science & Engineering, 2012, 86/87(3): 153-164. |
21 | Ooms G , Pourquie M J B M , Westerweel J . Numerical study of laminar core-annular flow in a torus and in a 90° pipe bend[J]. AIChE Journal, 2015, 61(7): 2319-2328. |
22 | Ghosh S , Das G , Das P K . Simulation of core annular in return bends—a comprehensive CFD study[J]. Chemical Engineering Research & Design, 2011, 89(11): 2244-2253. |
23 | Macías-Hernández M J , Dávila‐Maldonado O , Guzmán-Vargas A , et al . CFD simulation of interfacial instability from the nozzle in the formation of viscous core-annular flow[J]. Canadian Journal of Chemical Engineering, 2016, 94(10): 2004-2012. |
24 | Housz E M R M I , Ooms G , Henkes R A W M , et al . A comparison between numerical predictions and experimental results for core-annular flow with a turbulent annulus[J]. AIChE Journal, 2014, 60(8): 3046-3056. |
25 | Dehkordi P B , Colombo L P M , Guilizzoni M , et al . CFD simulation with experimental validation of oil-water core-annular flows through Venturi and nozzle flow meters [J]. Journal of Petroleum Science & Engineering, 2017, 149(20): 540-552. |
26 | 屠大燕, 王绍文, 潘大林 . 液环同心输送的流动分析[J]. 油气储运, 1984, 3(6): 16-26. |
Tu D Y , Wang S W , Pan D L . Concentric flow analysis of liquid ring[J]. Oil & Gas Storage and Transportation, 1984, 3(6): 16-26. | |
27 | 江帆, 岳鹏飞, 黎斯杰, 等 . 高黏石油管道球阀内油水环状流数值模拟[J]. 油气储运, 2017, 36(7): 800-804. |
Jiang F , Yue P F , Li S J , et al . Numerical simulation of oil-water annular flow inside the ball valve in high-pour-point oil pipeline[J]. Oil & Gas Storage and Transportation, 2017, 36(7): 800-804. | |
28 | 江帆, 岳鹏飞, 黎斯杰, 等 . 水环稠油运输中的球阀内流动结构数值模拟[J]. 石油机械, 2017, 45(4): 107-112. |
Jiang F , Yue P F , Li S J , et al . Numerical simulation of flow structure in ball check valve in water ring heavy oil transportation[J]. China Petroleum Machinery, 2017, 45(4): 107-112. | |
29 | Fan J , Wang Y , Ou J , et al . Numerical simulation on oil-water annular flow through the Π bend[J]. Industrial & Engineering Chemistry Research, 2014, 53(19): 8235-8244. |
30 | Jiang F , Wang Y , Ou J , et al . Numerical simulation of oil-water core annular flow in a U-bend based on the Eulerian model[J]. Chemical Engineering & Technology, 2014, 37(4): 659-666. |
31 | 蒋文明, 杜仕林, 刘杨, 等 . 新型稠油水环发生器维稳特性与结构优化研究[J]. 湖南大学学报(自然科学版), 2018, 45(8): 86-90. |
Jiang W M , Du S L , Liu Y , et al . Study on stability characteristics and structural optimization of a new type of core-annular flow generator with high viscosity oil[J]. Journal of Hunan University (Natural Sciences), 2018, 45(8): 86-90. | |
32 | Rodriguez O M H , Bannwart A C , Carvalho C H M D . Pressure loss in core-annular flow: modeling, experimental investigation and full-scale experiments[J]. Journal of Petroleum Science & Engineering, 2009, 65(1/2): 67-75. |
[1] | 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157. |
[2] | 张丽, 由钢, 乔霄峰, 许光文, 刘国桢, 刘云义. 氯碱电解槽内压力波动的混沌分析及流型识别[J]. 化工学报, 2019, 70(S1): 35-44. |
[3] | 张雷刚, 许波, 施娟, 陈振乾. 微重力条件下FC-72在针肋表面冷凝传热的实验研究[J]. 化工学报, 2019, 70(S1): 45-53. |
[4] | 田亚晓, 王乃用, 李常兴, 杜文静. 泡沫镍板冷却特性的实验研究及数值模拟[J]. 化工学报, 2019, 70(S1): 79-85. |
[5] | 林俊杰, 罗坤, 王帅, 胡陈枢, 樊建人. coarse-grained CFD-DEM方法在不同流态流化床中的模拟验证[J]. 化工学报, 2019, 70(5): 1702-1712. |
[6] | 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722. |
[7] | 李兵, 杨义, 刘作华, 陶长元, 谷德银, 许传林, 王运东. 湿法磷酸固-液体系混沌混合与浸出强化行为[J]. 化工学报, 2019, 70(5): 1742-1749. |
[8] | 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760. |
[9] | 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831. |
[10] | 朱兵国, 吴新明, 张良, 孙恩慧, 张海松, 徐进良. 垂直上升管内超临界CO2 流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290. |
[11] | 杜文欣, 伍联营, 张伟涛, 陈灿, 胡仰栋. 钢球在液体中振动磨损量的研究[J]. 化工学报, 2019, 70(4): 1505-1511. |
[12] | 朱明汉, 白鹏飞, 胡艳鑫, 黄金. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357. |
[13] | 邱君君, 张小松, 李玮豪. 无霜空气源热泵系统冬季除湿性能初步实验[J]. 化工学报, 2019, 70(4): 1605-1613. |
[14] | 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308. |
[15] | 梁倩卿, 马学虎, 王凯, 春江, 郝婷婷, 兰忠, 王亚雄. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281. |