化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1734-1741.doi: 10.11949/j.issn.0438-1157.20181285

• 流体力学与传递现象 • 上一篇    下一篇

水平管路水环输送稠油减阻模拟实验

吴君强1,2(),蒋文明1,2(),杜仕林3,刘杨1,2   

  1. 1. 中国石油大学(华东)储运与建筑工程学院,山东 青岛 266580
    2. 山东省油气储运安全省级重点实验室,青岛市环海油气储运技术重点实验室,山东 青岛 266580
    3. 中国石油管道局工程有限公司,河北 廊坊 065000
  • 收稿日期:2018-10-31 修回日期:2019-02-19 出版日期:2019-05-05 发布日期:2019-05-10
  • 通讯作者: 蒋文明 E-mail:1932946766@qq.com;jiangwenming@upc.edu.cn
  • 作者简介:<named-content content-type="corresp-name">吴君强</named-content>(1995—),男,硕士研究生,<email>1932946766@qq.com</email>|蒋文明(1982—),男,博士,副教授,<email>jiangwenming@upc.edu.cn</email>
  • 基金资助:
    国家自然科学基金项目(51406240);山东省自然科学基金项目(ZR2014EEQ003);青岛市源头创新计划应用基础研究项目(17-1-1-88-jch)

Experiment on drag reduction of heavy oil in horizontal pipeline by water annular conveying

Junqiang WU1,2(),Wenming JIANG1,2(),Shilin DU3,Yang LIU1,2   

  1. 1. College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
    2. Shandong Provincial Key Laboratory of Oil & Gas Storage and Transportation Safety, Qingdao Key Laboratory of Circle Sea Oil & Gas Storage and Transportation Technology, Qingdao 266580, Shandong, China
    3. China Petroleum Pipeline Bureau Engineering Co., Ltd., Langfang 065000, Hebei, China
  • Received:2018-10-31 Revised:2019-02-19 Online:2019-05-05 Published:2019-05-10
  • Contact: Wenming JIANG E-mail:1932946766@qq.com;jiangwenming@upc.edu.cn

摘要:

随着石油开采的增加,黏度较大的稠油输送受到越来越多的关注。基于自主设计的两相流水环输送稠油实验系统,模拟并开展了水环输送稠油实验。拍摄了水环发生器在不同间隙尺寸下的流动流型,分析了不同实验条件下的水环输送稠油减阻效果。结果表明:水环输送可以大大降低管道输送过程中压降;结合实验和模拟,水环发生器间隙尺寸在0.9~1.4 mm时,水环的减阻效果最好;流速增加会增大单位管道上的压降,降低水环输送的减阻效果。

关键词: 石油, 黏度, 两相流, 水环, 压降, 减阻, 实验

Abstract:

With the increase of oil exploitation, the transportation of heavy oil with higher viscosity has received more and more attention. Based on the self-designed two-phase flow water annular transport heavy oil experimental system, the water annular transport heavy oil experiment was simulated and carried out. The flow pattern of the water annular generator under different gaps is captured, and the drag reduction effect of heavy oil transportation by water annular under different experimental conditions was analyzed. The experimental and simulated results show that the pressure drop in pipeline transportation can be greatly reduced by water annular conveying, and the water annular generator has the best drag reduction effect when the gap size is 0.9—1.4 mm. The pressure drop per unit pipeline will increase with flow rate, and high flow rate will reduce the drag reduction effect of water annular transportation.

Key words: petroleum, viscosity, two-phase flow, water annular, pressure drop, drag reduction, experiment

中图分类号: 

  • TE 832

图1

水环输送稠油实验系统"

图2

水环发生器结构"

表1

实验仪器与材料"

Instrument Model
water pump WCB75
oil pump YBHW3-80M1-2
pressure gauge LD-Y190
high speed camera HX-7
lubricating oil L-HM68
dyeing agent oil soluble dyes

图3

水环示意图及拍摄图"

图4

单相水、单相油与形成水环时的管线压力分布"

图5

水环发生器在不同间隙下的沿线压降"

图6

水环失稳图"

图7

高速摄像仪拍摄的水环流型"

图8

不同间隙下稠油体积分数管道分布情况"

图9

不同间隙下稠油体积分数管道横截面处分布情况"

图10

不同间隙尺寸下所形成的水环压降"

表2

不同间隙下环状流的压降实验数据"

Oil velocity/

(m/s)

Water velocity/(m/s) Gap size/mm Pressure drop/(Pa/m)
0.8 0.8 0.9 800
0.8 0.8 1.4 1000
0.8 0.8 1.9 1200
1.0 1.0 0.9 901
1.0 1.0 1.4 1122
1.0 1.0 1.9 1357
1.2 1.2 0.9 1024
1.2 1.2 1.4 1249
1.2 1.2 1.9 1489
1.4 1.4 0.9 1142
1.4 1.4 1.4 1389
1.4 1.4 1.9 1596
1.6 1.6 0.9 1357
1.6 1.6 1.4 1539
1.6 1.6 1.9 1799

图11

不同流速下的压降"

1 Xing X , Wang X , Pan H , et al . Fe/graphene nanocomposite as a catalyst for the viscosity reduction of heavy crude oil[J]. Petroleum Science & Technology, 2015, 33(20): 1742-1748.
2 马文鑫, 李岩, 申龙涉, 等 . 超稠油水膜面减阻输送技术的数值模拟[J]. 辽宁石油化工大学学报, 2011, 31(3): 38-41.
Ma W X , Li Y , Shen L S , et al . Numerical simulation of water film drag-reduction transport of super heavy oil[J]. Journal of Liaoning Shihua University, 2011, 31(3): 38-41.
3 段林林, 敬加强, 周艳杰, 等 . 稠油降黏集输方法综述[J]. 管道技术与设备, 2009, 32(5): 15-18.
Duan L L , Jing J Q , Zhou Y J , et al . A review of the method of viscous oil reduction[J]. Pipeline Technique and Equipment, 2009, 32(5): 15-18.
4 敬加强, 孙杰, 赵红艳, 等 . 稠油流动边界层水基泡沫减阻模拟[J]. 化工学报, 2014, 65(11): 4301-4308.
Jing J Q , Sun J , Zhao H Y , et al . Simulation of drag reduction of aqueous foam on heavy oil flow boundary layer[J]. CIESC Journal, 2014, 65(11): 4301-4308.
5 Mcmillen J M . Combined thermal and solvent stimulation: US4519454[P]. 1985.
6 兰文杰, 李少伟, 徐建鸿, 等 . 同轴环管微流控设备内液-液两相黏性流体的流动规律[J]. 化工学报, 2013, 64(2): 476-483.
Lan W J , Li S W , Xu J H , et al . The flow law of liquid-liquid two-phase viscous fluid in a coaxial loop microfluidic device[J]. CIESC Journal, 2013, 64(2): 476-483.
7 Dove I J , Buckner S J . Method of piping fluids: US0759374[P]. 1904.
8 Bannwart A C . Modeling aspects of oil-water core-annular flows[J]. Journal of Petroleum Science & Engineering, 2001, 32(2/3/4): 127-143.
9 Ghosh S , Mandal T K , Das G , et al . Review of oil water core annular flow[J]. Renewable & Sustainable Energy Reviews, 2009, 13(8): 1957-1965.
10 And D D J , Bai R , Chen K P , et al . Core-annular flows[J]. Annual Review of Fluid Mechanics, 1997, 29(1): 65-90.
11 Bannwart A C . Wavespeed and volumetric fraction in core annular flow[J]. International Journal of Multiphase Flow, 1998, 24(6): 961-974.
12 Silva R C R D , Mohamed R S , Bannwart A C . Wettability alteration of internal surfaces of pipelines for use in the transportation of heavy oil via core-flow[J]. Journal of Petroleum Science & Engineering, 2006, 51(1): 17-25.
13 Rodriguez O M H , Bannwart A C . Analytical model for interfacial waves in vertical core flow[J]. Journal of Petroleum Science & Engineering, 2006, 54(3): 173-182.
14 Rodriguez O M H , Bannwart A C . Experimental study on interfacial waves in vertical core flow[J]. Journal of Petroleum Science & Engineering, 2006, 54(3/4): 140-148.
15 Rodriguez O M H , Bannwart A C . Stability analysis of core-annular flow and neutral stability wave number[J]. AIChE Journal, 2008, 54(1): 20-31.
16 Grassi B , Strazza D , Poesio P . Experimental validation of theoretical models in two-phase high-viscosity ratio liquid-liquid flows in horizontal and slightly inclined pipes[J]. International Journal of Multiphase Flow, 2008, 34(10): 950-965.
17 Pillai D S , Dinesh B , Sundararajan T , et al . A viscous potential flow model for core-annular flow[J]. Applied Mathematical Modelling, 2016, 40(7/8): 5044-5062.
18 Balakhrisna T , Ghosh S , Das G , et al . Oil-water flows through sudden contraction and expansion in a horizontal pipe—phase distribution and pressure drop[J]. International Journal of Multiphase Flow, 2010, 36(1): 13-24.
19 Ghosh S , Das G , Das P K . Simulation of core annular downflow through CFD—a comprehensive study[J]. Chemical Engineering & Processing Process Intensification, 2010, 49(11): 1222-1228.
20 Kaushik V V R , Ghosh S , Das G , et al . CFD simulation of core annular flow through sudden contraction and expansion[J]. Journal of Petroleum Science & Engineering, 2012, 86/87(3): 153-164.
21 Ooms G , Pourquie M J B M , Westerweel J . Numerical study of laminar core-annular flow in a torus and in a 90° pipe bend[J]. AIChE Journal, 2015, 61(7): 2319-2328.
22 Ghosh S , Das G , Das P K . Simulation of core annular in return bends—a comprehensive CFD study[J]. Chemical Engineering Research & Design, 2011, 89(11): 2244-2253.
23 Macías-Hernández M J , Dávila‐Maldonado O , Guzmán-Vargas A , et al . CFD simulation of interfacial instability from the nozzle in the formation of viscous core-annular flow[J]. Canadian Journal of Chemical Engineering, 2016, 94(10): 2004-2012.
24 Housz E M R M I , Ooms G , Henkes R A W M , et al . A comparison between numerical predictions and experimental results for core-annular flow with a turbulent annulus[J]. AIChE Journal, 2014, 60(8): 3046-3056.
25 Dehkordi P B , Colombo L P M , Guilizzoni M , et al . CFD simulation with experimental validation of oil-water core-annular flows through Venturi and nozzle flow meters [J]. Journal of Petroleum Science & Engineering, 2017, 149(20): 540-552.
26 屠大燕, 王绍文, 潘大林 . 液环同心输送的流动分析[J]. 油气储运, 1984, 3(6): 16-26.
Tu D Y , Wang S W , Pan D L . Concentric flow analysis of liquid ring[J]. Oil & Gas Storage and Transportation, 1984, 3(6): 16-26.
27 江帆, 岳鹏飞, 黎斯杰, 等 . 高黏石油管道球阀内油水环状流数值模拟[J]. 油气储运, 2017, 36(7): 800-804.
Jiang F , Yue P F , Li S J , et al . Numerical simulation of oil-water annular flow inside the ball valve in high-pour-point oil pipeline[J]. Oil & Gas Storage and Transportation, 2017, 36(7): 800-804.
28 江帆, 岳鹏飞, 黎斯杰, 等 . 水环稠油运输中的球阀内流动结构数值模拟[J]. 石油机械, 2017, 45(4): 107-112.
Jiang F , Yue P F , Li S J , et al . Numerical simulation of flow structure in ball check valve in water ring heavy oil transportation[J]. China Petroleum Machinery, 2017, 45(4): 107-112.
29 Fan J , Wang Y , Ou J , et al . Numerical simulation on oil-water annular flow through the Π bend[J]. Industrial & Engineering Chemistry Research, 2014, 53(19): 8235-8244.
30 Jiang F , Wang Y , Ou J , et al . Numerical simulation of oil-water core annular flow in a U-bend based on the Eulerian model[J]. Chemical Engineering & Technology, 2014, 37(4): 659-666.
31 蒋文明, 杜仕林, 刘杨, 等 . 新型稠油水环发生器维稳特性与结构优化研究[J]. 湖南大学学报(自然科学版), 2018, 45(8): 86-90.
Jiang W M , Du S L , Liu Y , et al . Study on stability characteristics and structural optimization of a new type of core-annular flow generator with high viscosity oil[J]. Journal of Hunan University (Natural Sciences), 2018, 45(8): 86-90.
32 Rodriguez O M H , Bannwart A C , Carvalho C H M D . Pressure loss in core-annular flow: modeling, experimental investigation and full-scale experiments[J]. Journal of Petroleum Science & Engineering, 2009, 65(1/2): 67-75.
[1] 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
[2] 张丽, 由钢, 乔霄峰, 许光文, 刘国桢, 刘云义. 氯碱电解槽内压力波动的混沌分析及流型识别[J]. 化工学报, 2019, 70(S1): 35-44.
[3] 张雷刚, 许波, 施娟, 陈振乾. 微重力条件下FC-72在针肋表面冷凝传热的实验研究[J]. 化工学报, 2019, 70(S1): 45-53.
[4] 田亚晓, 王乃用, 李常兴, 杜文静. 泡沫镍板冷却特性的实验研究及数值模拟[J]. 化工学报, 2019, 70(S1): 79-85.
[5] 林俊杰, 罗坤, 王帅, 胡陈枢, 樊建人. coarse-grained CFD-DEM方法在不同流态流化床中的模拟验证[J]. 化工学报, 2019, 70(5): 1702-1712.
[6] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[7] 李兵, 杨义, 刘作华, 陶长元, 谷德银, 许传林, 王运东. 湿法磷酸固-液体系混沌混合与浸出强化行为[J]. 化工学报, 2019, 70(5): 1742-1749.
[8] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[9] 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831.
[10] 朱兵国, 吴新明, 张良, 孙恩慧, 张海松, 徐进良. 垂直上升管内超临界CO2 流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290.
[11] 杜文欣, 伍联营, 张伟涛, 陈灿, 胡仰栋. 钢球在液体中振动磨损量的研究[J]. 化工学报, 2019, 70(4): 1505-1511.
[12] 朱明汉, 白鹏飞, 胡艳鑫, 黄金. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357.
[13] 邱君君, 张小松, 李玮豪. 无霜空气源热泵系统冬季除湿性能初步实验[J]. 化工学报, 2019, 70(4): 1605-1613.
[14] 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308.
[15] 梁倩卿, 马学虎, 王凯, 春江, 郝婷婷, 兰忠, 王亚雄. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .