化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1575-1582.doi: 10.11949/j.issn.0438-1157.20181278

• 能源和环境工程 • 上一篇    下一篇

不同烟气组分对粉状活性焦吸附汞的影响机理

安东海1(),韩晓林3,程星星1(),周滨选1,郑瑛2,董勇1()   

  1. 1. 山东大学燃煤污染物减排国家工程实验室,山东 济南250061
    2. 华中科技大学煤燃烧国家重点实验室,湖北 武汉430074
    3. 神华新疆能源有限责任公司,新疆 乌鲁木齐 830027
  • 收稿日期:2018-10-31 修回日期:2018-12-22 出版日期:2019-04-05 发布日期:2019-01-07
  • 通讯作者: 程星星,董勇 E-mail:adhcjxy@163.com;xcheng@sdu.edu.cn;dongy@sdu.edu.cn
  • 作者简介:<named-content content-type="corresp-name">安东海</named-content>(1988—),男,博士研究生, <email>adhcjxy@163.com</email>|程星星(1984—),女,博士,副教授,<email>xcheng@sdu.edu.cn</email>|董勇(1967—),男,博士,教授,<email>dongy@sdu.edu.cn</email>
  • 基金资助:
    国家重点研发计划项目(2017YFF0209803)

Effect mechanisms of different flue gas on adsorption of mercury by powder activated coke

Donghai AN1(),Xiaolin HAN3,Xingxing CHENG1(),Binxuan ZHOU1,Ying ZHENG2,Yong DONG1()   

  1. 1. National Engineering Laboratory of Coal-Fired Pollution Reduction, Shandong University, Jinan 250061, Shandong, China
    2. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
    3. Shenhua Xinjiang Energy Company Limited, Urumqi 830027, Xinjiang, China
  • Received:2018-10-31 Revised:2018-12-22 Online:2019-04-05 Published:2019-01-07
  • Contact: Xingxing CHENG,Yong DONG E-mail:adhcjxy@163.com;xcheng@sdu.edu.cn;dongy@sdu.edu.cn

摘要:

在模拟燃煤热烟气为热源和介质条件下,以准东褐煤为原料,通过一维沉降炉进行炭化活化(一步法)制备粉状活性焦,考察了活性焦对Hg0的吸附能力,探索了SO2、H2O、O2、CO2、H2O+O2、SO2+O2及H2O+SO2+O2气氛对活性焦吸附Hg0的影响机理。结果表明:一步法获得的活性焦对Hg0具有较高的吸附性能。N2气氛作对比,H2O、H2O+O2、CO2和SO2气氛下抑制活性焦对Hg0的吸附;O2、SO2+O2和H2O+SO2+O2促进活性焦对Hg0的吸附。通过Hg 4f的XPS分析证明了不同气氛组成对活性焦吸附Hg0的抑制和促进机理。H2O覆盖在活性焦活性位上和堵塞孔隙而抑制活性焦对Hg0的吸附;SO2与Hg0在活性焦上发生竞争吸附而抑制对Hg0的吸附;CO2 吸附在活性焦微孔上而抑制对Hg0的吸附;O2气氛下主要形成了HgO, SO2+O2气氛下Hg0被氧化成HgSO3,进一步氧化成HgSO4; H2O+SO2+O2气氛下,Hg0被氧化成HgO和HgSO4

关键词: 粉状活性焦, 一步法, 汞吸附, 影响机理

Abstract:

Under the condition of simulating coal-fired hot flue gas as heat source and medium, quasi-east lignite was used as raw material to carry out carbonization activation (one-step method) to prepare powdery activated coke by one-dimensional settling furnace, and the adsorption capacity of activated coke to Hg0 was investigated. Further, the effects of SO2, H2O, O2, CO2, H2O+O2, SO2+O2 and H2O+SO2+O2 on Hg0 removal efficiency were examined in flue gas. The results indicate that the coke has high adsorption performance for Hg0 removal. The N2 atmosphere was used as comparison, the O2, SO2+O2 and H2O+SO2+O2 are beneficial for Hg0 removal, while the H2O, CO2, SO2 and H2O+O2 have inhibiting effect on Hg0 removal. Furthermore, the spectra of Hg 4f were determined by XPS, in order to explore the mechanism of inhibition and promotion of Hg0 adsorption by activated coke under different flue gas. H2O can inhibit the adsorption of active coke on Hg0via covering the active coke sites and blocking the pores, SO2 can inhibit the adsorption through the competitive adsorption of SO2 and HgO on the active coke, and CO2 that adsorbed on the active coke micropore also can inhibit the adsorption of active coke on Hg0. In the atmosphere of O2 and SO2+O2, the Hg0 is oxidized into HgO and HgSO3, separately. And the HgSO3 further oxidized into HgSO4 by O2. Besides, in the atmosphere of H2O+SO2+O2, Hg0 is oxidized into HgO and HgSO4.

Key words: powder activated coke, one-step method, mercury adsorption, effect mechanism

中图分类号: 

  • TQ 028.8

图1

粉焦制备实验装置系统"

表1

样品的工业分析、元素分析及原煤烧失率"

工业分析/%元素分析/%烧失率/%
MadVadAadFCadCadHadOadNadSad
0.884.5633.8760.6960.740.962.090.840.6228.7

图2

Hg0吸附系统"

图3

原煤(a)、活性焦(b)样品的扫描电镜图"

图4

活性焦的N2吸附-脱附等温线"

表2

活性焦的孔隙结构参数"

总比表面积/

(m2/g)

微孔比表面积/

(m2/g)

总孔容/

(cm3/g)

微孔孔容/

(cm3/g)

330.9293.70.1910.118

图5

活性焦的孔径分布"

图6

N2和N2+6%O2气氛下Hg0的吸附曲线(a)及吸附机理(b)"

图7

N2和N2+6%O2气氛下乏焦的Hg 4f的XPS谱图"

图8

N2和N2+0.06% SO2+6%O2气氛下汞的吸附曲线(a)及反应机理(b)"

图10

N2+SO2+O2和N2+0.06% SO2+6% O2+6% H2O气氛下Hg 4f的XPS谱图"

图9

N2和N2+0.06% SO2+6%O2+6%H2O气氛下汞的吸附曲线(a)及反应机理(b)"

图11

N2、N2+0.06% SO2、N2 +6% H2O和N2 +6% H2O+6% O2气氛下汞的吸附曲线"

1 谭增强, 邱建荣, 向军, 等. 氯化锌改性竹炭脱除单质汞的特性与机理分析[J]. 化工学报, 2011, 62(7) : 1944-1950.
TanZ Q, QiuJ R, XiangJ, et al. Performance and mechanism for elemental mercury removal by bamboo charcoal modified by ZnCl2[J]. CIESC Journal, 2011, 62(7) : 1944-1950.
2 YanN Q, LiuS H, ChangS G, et al. Method for the study of gaseous oxidants for the oxidation of mercury gas[J]. Ind. Eng. Chem. Res., 2005, 44(15): 5567-5574.
3 周长松, 孙路石, 张安超, 等.非均相类 Fenton 催化剂脱汞的实验与机理[J].化工学报, 2015, 66(4): 1324-1330.
ZhouC S, SunL S, ZhangA C, et al.Catalytic removal of Hg0 in flue gas by heterogeneous Fenton-like catalysts[J]. CIESC Journal, 2015, 66(4): 1324-1330.
4 沈伯雄, 蔡记, 陈建宏, 等. KBr和KI改性黏土脱除模拟烟气中的单质汞[J]. 化工学报, 2014, 65(2): 711-717.
ShenB X, CaiJ, ChenJ H, et al. Removal of element mercury from simulated flue gas by clay modified with KBr and KI[J]. CIESC Journal, 2014, 65(2): 711-717.
5 韩军, 徐明厚, 詹靖, 等. 煤燃烧过程汞排放的模拟[J]. 中国电机工程学报, 2003, 23(12): 208-212.
HanJ, XuM H, ZhanJ, et al. Pridicting the emission of mercury during coal combustion[J]. Proceedings of the CSEE, 2003, 23(12): 208-212.
6 ZhouZ, LiuX, HuY. An efficient sorbent based on CuCl2 loaded CeO2-ZrO2 for elemental mercury removal from chlorine-free flue gas [J]. Fuel, 2018, 216: 356-363.
7 罗小雨, 苏胜, 向军, 等.汞在 MnOx-CeO2/γ-Al2O3 催化剂表面的赋存形态分析[J]. 化工学报, 2015, 66(6): 2082-2088.
LuoX Y, SuS, XiangJ, et al.Speciation of mercury formed on MnOx-CeO2/γ-Al2O3 catalyst surface[J].CIESC Journal, 2015, 66(6): 2082-2088.
8 WangS, ZhangL, LiG, et al. Mercury emission and speciation of coal-fired power plants in China [J]. Atmospheric Chemistry and Physics, 2010, 10(3): 1183-1192.
9 WuS, LiH, LiL, et al. Effects of flue-gas parameters on low temperature NO reduction over a Cu-promoted CeO2-TiO2 catalyst[J]. Fuel, 2015, 159: 876-882.
10 ZhaoY, ZhangJ, LiuJ, et al. Experimental study on fly ash capture mercury in flue gas[J]. Science China-Technological Sciences, 2010, 53(4): 976-983.
11 丁峰, 张军营, 赵永椿, 等. 天然矿物材料吸附剂脱除烟气中单质汞的实验研究[J]. 中国电机工程学报, 2009, 29(35): 65-70.
DingF, ZhangJ Y, ZhaoY C, et al. Experimental study on natural mineral sorbents to remove element mercury in flue gas [J]. Proceedings of the CSEE, 2009, 29(35): 65-70.
12 XuW, YusufG, LiuY, et al. Removal of elemental mercury from flue gas using CuOx and CeO2 modified rice straw chars enhanced by ultrasound[J]. Fuel Processing Technology, 2018, 170: 21–31.
13 任建莉, 周劲松, 骆仲泱, 等. 钙基类吸附剂脱除烟气中气态汞的试验研究[J].燃料化学学报, 2006, 34(5): 557-561.
RenJ L, ZhouJ S, LuoZ Y, et al. Ca-based sorbents for mercury vapor removal from flue gas[J]. Journal of Fuel Chemistry and Technology, 2006, 34(5): 557-561.
14 黄治军, 段钰锋, 王运军, 等. 改性氢氧化钙吸附脱除模拟烟气中汞的试验研究[J]. 中国电机工程学报, 2009, 29(17): 56-62.
HuangZ J, DuanY F, WangY J, et al. Experimental investigation on absorption of Hg in simulated fuel gas by modified Ca(OH)2[J]. Proceedings of the CSEE, 2006, 34(5): 557-561.
15 LiH, ZhuL, WuS K, et al. Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere[J]. International Journal of Coal Geology, 2017, 170: 69-76.
16 乔少华, 晏乃强, 陈杰, 等. MnOx /α-Al2O3催化氧化燃煤烟气中 Hg0的试验研究[J]. 中国环境科学, 2009, 29(3): 237-241.
QiaoS H, YanN Q, ChenJ, et al. Catalytic oxidation of elemental mercury in flue gas on MnOx/α-Al2O3[J]. China Environmental Science, 2009, 29(3): 237-241.
17 ZhangA C, XingW B, ZhangZ H, et al. Promotional effect of SO2 on CeO2/TiO2 material for elemental mercury removal at low temperature[J]. Atmos. Pollut. Res., 2016, 7(5): 895-902.
18 李阳, 朱玉雯, 高继慧, 等.活性焦孔结构演变规律及对脱硫性能的影响[J]. 化工学报, 2015, 66(3): 1126-1132.
LiY, ZhuY W, GaoJ H, et al. Activated coke pore structure evolution and its influence on desulfuration[J]. CIESC Journal, 2015, 66(3): 1126-1132.
19 华晓宇, 周劲松, 高翔, 等. 渗铈活性焦汞脱附性能实验研究[J]. 中国电机工程学报, 2011, 31(29): 61-66.
HuaX Y, ZhouJ S, GaoX, et al. Experimental investigation of mercury desorption on CeO2 impregnated activated coke[J]. Proceedings of the CSEE, 2011, 31 (29): 61-66.
20 熊银伍, 杜铭华, 步学鹏, 等. 改性活性焦脱除烟气中汞的实验研究[J]. 中国电机工程学报, 2007, 27(35): 17-22.
XiongY W, DuM H, BuX P, et al. Experimental research of removing mercury from flue gas by modified activated coke[J]. Proceedings of the CSEE, 2007, 27(35): 17-22.
21 陈传敏, 贾文波, 刘松涛, 等. CuO改性商用选择性催化还原催化剂催化氧化单质汞性能[J]. 化工进展, 2018, 37(10): 3903-3910.
ChenC M, JiaW B, LiuS T, et al. Catalytic oxidation of elemental mercury over CuO2 modified commercial SCR catalyst[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3903-3910.
22 赵玉冰, 郭淼, 白中华, 等.活性焦脱汞实验研究[J]. 洁净煤技术, 2013, 19(1): 48-51.
ZhaoY B, GuoM, BaiZ H, et al. Experimental research of mercury removal efficiency by activated coke[J]. Clean Coal Technology, 2013, 19(1): 48-51.
23 ScalaF, ChironeR, LanciaA. Elemental mercury vapor capture by powdered activation carbon in a fluidized bed reactor[J]. Fuel, 2010, 90: 2077-2082.
24 BrunauerS, DemingL, DemingW, et al. On a theory of the van der Waals adsorption of gases[J]. Journal of the American Chemical Society, 1940, 62(7): 1723-1732.
25 ClarksonC, SolanoN, BustinR, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion [J]. Fuel, 2013, 103: 606-616.
26 石佩佩.活性炭孔结构和改性对燃煤烟气脱汞的影响及机理研究[D]. 徐州: 中国矿业大学, 2016.
ShiP P. The effect of pore structure and modified of activated carbons on mercury removal in flue gas and adsorption mechanism[D]. Xuzhou: China University of Mining and Technology, 2016.
27 沈彩琴.活性炭纤维表面吸附汞机理的密度泛函理论研究[D]. 杭州: 浙江工业大学, 2015.
ShenC Q. Density functional theory study on the mechanism of mercury adsorption by activated carbon fiber[D]. Hangzhou: Zhejiang University of Technology, 2015.
28 WangJ, YangJ, LiuZ, et al. Gas-phase elemental mercury capture by a V2O5/AC catalyst[J]. Fuel Processing Technology, 2010, 91: 676–680.
29 许绿丝. 改性处理活性炭纤维吸附氧化脱除SO2/NOx/Hg 的研究[D].武汉: 华中科技大学.2007.
XuL S. Study on adsorption and oxidation removal of SO2/NOx/Hg at low-temperature by modified activated carbon fiber [D]. Wuhan: Huazhong University of Science & Technology, 2007.
30 WangY, DuanY, YangL, et al. Experimental study on mercury transformation and removal in coal-fired boiler flue gas[J]. Fuel Processing Technology, 2009, 90: 643–651.
31 WeiZ, LuoY, LiB. Microwave assisted catalytic removal of elemental mercury from flue gas using Mn/zeolite catalyst[J]. Atmospheric Pollution Research, 2015, 6(1): 645-651.
32 CaiJ, ShenB, LiZ, et al. Removal of elemental mercury by clays impregnated with KI and KBr[J]. Chemical Engineering Journal, 2014, 241: 19-27.
33 薛源, 段钰锋, 王卉, 等. 模拟富氧烟气中CO2对活性炭脱汞的实验研究[J].发电设备, 2017, 31(2): 99-103.
XueY, DuanY F, WangH, et al. Experimental research on mercury removal by activated carbon with CO2 in simulated flue gas from oxy-fuel combustion[J]. Power Equipment, 2017, 31(2): 99-103.
[1] 吕喜蕾, 阮厚航, 陈皓, 吕秀阳. 近临界乙醇中Zr-SBA-15催化糠醛一步法制备乙酰丙酸乙酯[J]. 化工学报, 2018, 69(6): 2488-2495.
[2] 曹晓畅, 王志, 乔志华, 王纪孝, 许振良. 一步法制备含氨基化合物的非对称CO2分离膜[J]. 化工学报, 2018, 69(11): 4778-4787.
[3] 王晨平, 段钰锋, 佘敏, 朱纯, 杨志忠. SO2活化改性石油焦吸附剂的汞吸附特性[J]. 化工学报, 2017, 68(12): 4764-4773.
[4] 陆来仙1,2,童张法1,石海信2,张友全1. 非晶交联辛烯基琥珀酸淀粉酯的一步法合成及其性能[J]. 化工进展, 2014, 33(02): 453-458.
[5] 高丽雅,檀学军,张东升,王淑芳,赵新强,王延吉. 羟胺(盐)的合成及其应用研究进展[J]. 化工进展, 2012, 31(09): 2043-2048.
[6] 张 平1,徐明仙2,俞景译1,林春绵1. 超/亚临界CO2中邻甲酚羧基化合成邻甲基水杨酸[J]. 化工进展, 2012, 31(05): 1137-1142.
[7] 凌晓凤,顾 娟,李健生,孙秀云,韩卫清,沈锦优,王连军. 一步法合成载铁有序介孔碳材料的形成机理[J]. 化工进展, 2012, 31(01 ): 156-162.
[8] 赵 权,夏咏梅,方 云. 利用环氧丙烷对γ-丁内酯的催化扩环反应一步法合成内酯型冠醚 [J]. , 2008, 27(7): 1111-.
[9] 韩媛媛,张海涛,应卫勇,房鼎业. 合成气一步法制二甲醚的一种分离流程 [J]. , 2008, 27(6): 949-.
[10] 纪红兵;钱宇;何笃贵;王乐夫.

一步法催化氧化正辛醇生成正辛酸

[J]. , 2005, 56(9): 1673-1678.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .