化工学报 ›› 2019, Vol. 70 ›› Issue (6): 2269-2278.doi: 10.11949/j.issn.0438-1157.20181274

• 能源和环境工程 • 上一篇    下一篇

氯化钙溶液喷雾闪蒸再生特性模拟及试验分析

张昊1(),申凯2,赖艳华1,崔琳1,董勇1()   

  1. 1. 山东大学能源与动力工程学院,山东 济南 250061
    2. 西北电力设计院,陕西 西安 710075
  • 收稿日期:2018-10-31 修回日期:2019-03-25 出版日期:2019-06-05 发布日期:2019-04-17
  • 通讯作者: 董勇 E-mail:zhag930502@163.com;Dongy@sdu.edu.cn
  • 作者简介:<named-content content-type="corresp-name">张昊</named-content>(1993—),男,博士研究生,<email>zhag930502@163.com</email>
  • 基金资助:
    国家质检总局科技计划项目(2017QK178);山东省重点研发计划项目(2018GGX104010)

Simulation and experimental analysis of spray flash regeneration characteristics of CaCl2 solution

Hao ZHANG1(),Kai SHEN2,Yanhua LAI1,Lin CUI1,Yong DONG1()   

  1. 1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Northwest Electric Power Design Institute, Xi an 710075, Shaanxi, China
  • Received:2018-10-31 Revised:2019-03-25 Online:2019-06-05 Published:2019-04-17
  • Contact: Yong DONG E-mail:zhag930502@163.com;Dongy@sdu.edu.cn

摘要:

燃煤电厂排放的烟气中含有大量水蒸气,氯化钙溶液循环除湿技术具有较好的除湿潜力。为了研究吸湿后的氯化钙溶液的再生性能,使用Matlab软件对液滴闪蒸过程进行了数值模拟,并搭建了氯化钙溶液喷雾闪蒸试验台。考察了闪蒸压力,溶液初始温度、浓度、溶液流量等因素对氯化钙溶液再生量的影响。试验结果表明了数学模型的准确性;溶液表面蒸气压和再生压力的差值以及溶液过热度是影响再生量的关键因素;闪蒸出口水蒸气经冷凝后Cl含量不足0.2 mg/L。浓度为35%的溶液在再生温度为60℃、再生压力为10 kPa、流量为0.2 m3/h的情况下,可以实现5 kg/h以上的水分回收量。

关键词: 闪蒸, 再生, 数值模拟, 溶液除湿

Abstract:

The flue gas emitted by coal-fired power plants contains a large amount of water vapor, and the calcium chloride solution circulating dehumidification technology has a good dehumidification potential. To study the regeneration performance of the CaCl2 solution after dehumidification, the droplet flashing process was numerically simulated by using Matlab software, and a test bench on regeneration of CaCl2 solution by spray flash evaporation was set up. The effects of flash pressure, initial solution temperature, concentration, and solution flow rate on the regeneration of CaCl2 solution were investigated. The results showed the accuracy of the mathematical model. The difference between vapor pressure on the solution surface and the regeneration pressure and the superheat of the solution are the key factors affecting the regeneration efficiency. The concentration of Cl- in the condensed water after flashing is less than 0.2 mg/L. CaCl2 solution with a concentration of 35%, a regeneration temperature of 60℃, a regeneration pressure of 10 kPa, and a flow rate of 0.2 m3/h will has a rate of more than 5 kg/h water recovery quality.

Key words: flash-evaporation, regeneration, numerical simulation, solution dehumidification

中图分类号: 

  • TK 124

图1

物质三相图"

图2

CaCl2液滴闪蒸模型"

图3

CaCl2液滴闪蒸模拟求解流程"

表1

模拟计算主要参数"

Parameter Value
initial droplet temperature T 0/K 333.15—343.15
initial droplet concentration x 0/% 30—40
initial droplet diameter D s(0) /mm 1
flash evaporation pressure P /kPa 5—15
initial environmental temperature T /K 293.15

图4

不同初温下液滴温度随时间的变化"

图5

不同初温下液滴直径随时间的变化"

图6

不同初温下闪蒸效率随时间的变化"

图7

不同初始浓度下液滴温度随时间的变化"

图8

不同初始浓度下液滴直径随时间的变化"

图9

不同初始浓度下闪蒸效率随时间的变化"

图10

不同闪蒸压力下液滴温度随时间的变化"

图11

不同闪蒸压力下液滴直径随时间的变化"

图12

不同闪蒸压力下闪蒸效率随时间的变化"

图13

CaCl2溶液喷雾闪蒸再生试验系统"

表2

试验系统测量仪器"

Experimental parameters Instrument Range Precision

temperature

PT100

temperature sensor

0—150℃

0.1℃

pressure

MIK-P300

pressure sensor

0—20 kPa

0.5%

solution flow

LWGY-MK-DN6

turbine flowmeter

0.1—0.6 m3/h

±1%

solution density[border:border-bottom:solid;]

densitometer[border:border-bottom:solid;]

1200—1300 kg/m3

1300—1400 kg/m3

1400—1500 kg/m3

1 kg/m3[border:border-bottom:solid;]

图14

闪蒸量随不同溶液温度的变化"

图15

闪蒸量随不同溶液浓度的变化"

图16

闪蒸量随不同闪蒸压力的变化"

图17

闪蒸量随不同溶液过热度的变化"

图18

不同溶液温度下试验与模拟蒸发效率"

图19

不同溶液浓度下试验与模拟蒸发效率"

图20

不同闪蒸压力下试验与模拟蒸发效率"

表3

不同试验工况下的Cl-浓度"

Solution temperation/K Solution concentration/%

Cl- concentration/

(mg/L)

59.86 0.285 0.142
60.69 0.345 0.156
61.10 0.409 0.175
64.57 0.351 0.163
69.24 0.347 0.165
1 姚增权 . 湿法脱硫烟气直接排放的环境问题探讨[J]. 电力科技与环保, 2003, 19(2): 5-8.
Yao Z Q . Investigation on environmental problems related to the direct discharge of an unheated moist plume[J]. Electric Power Technology and Environmental Protection, 2003, 19(2): 5-8.
2 熊莹莹, 谭厚章, 许伟刚, 等 . 火电厂烟气潜热和凝结水回收的试验研究[J]. 热力发电, 2015, (6): 77-81.
Xiong Y Y , Tan H Z , Xu W G , et al . Experimental study on latent heat and condensate recovery from flue gas in coal-fired power plants[J]. Thermal Power Generation, 2015, (6): 77-81.
3 陈林, 孙颖颖 . 回收烟气余热的特种耐腐蚀塑料换热器的性能分析[J]. 电机工程学报, 2014, 34(17): 2778-2783.
Chen L , Sun Y Y . Performance analysis of anti-corrosion heat exchangers made of special plastics for flue gas heat recovery[J]. Proceedings of the CSEE, 2014, 34(17): 2778-2783.
4 路源, 徐震, 肖云汉 . 开式吸收式热泵降膜吸收器实验研究[J]. 太阳能学报, 2012, 33(3): 368-373.
Lu Y , Xu Z , Xiao Y H . Experimental study on the internally-cooled absorber in open cycle absorption heat pump[J]. Acta Energiae Solaris Sinica, 2012, 33(3): 368-373.
5 Wang D X , Bao A , Kunc W , et al . Coal power plant flue gas waste heat and water recovery[J]. Applied Energy, 2012, 91(1): 341-348.
6 Chen H P , Zhou Y N , Cao S T , et al . Heat exchange and water recovery experiments of flue gas with using nanoporous ceramic membranes[J]. Applied Thermal Engineering, 2017, 110: 686-694.
7 吕扬, 董勇, 田路泞, 等 . 燃煤电厂湿烟气的除湿特性[J]. 化工学报, 2017, 68(9): 3558-3564.
Lyu Y , Dong Y , Tian L N , et al . Dehumidification performance of wet flue gas in coal-fired power plant[J]. CIESC Journal, 2017, 68(9): 3558-3564.
8 Lars W , Roger H , Jonathan F . Flue gas purification and heat recovery: a biomass fired boiler supplied with an open absorption system[J]. Applied Energy, 2012, 96(3): 444-450.
9 Wang Z , Zhang X . Waste heat and water recovery from natural gas boilers: parametric analysis and optimization of a flue-gas-driven open absorption system[J]. Energy Conversion and Management, 2017, 154: 526-537.
10 Wang Z , Zhang X . Evaluation of a flue gas driven open absorption system for heat and water recovery from fossil fuel boilers[J]. Energy Conversion and Management, 2016, 128: 57-65.
11 魏璠, 肖云汉, 张士杰, 等 . 喷淋吸收过程模型及实验研究[J]. 工程热物理学报, 2008, 29(10): 1621-1624.
Wei F , Xiao Y H , Zhang S J , et al . The model and experiment of heat and mass transfer in spraying absorption[J]. Journal of Engineering Thermophysics, 2008, 29(10): 1621-1624.
12 李美军 . 高湿度烟气水平管降膜吸收过程的传热传质研究[D]. 北京: 中国科学院大学, 2017.
Li M J . Investigation of the heat and mass transfer of falling films over horizontal tubes in the presence of humid flue gas[D]. Beijing: University of Chinese Academy of Sciences, 2017.
13 钱俊飞, 殷勇高, 张小松, 等 . 太阳能溶液再生性能[J]. 化工学报, 2014, 65(S2): 272-279.
Qian J F , Yin Y G , Zhang X S , et al . Performance of solar liquid desiccant regeneration[J]. CIESC Journal, 2014, 65(S2): 272-279.
14 Misha S , Mat S , Ruslan M H , et al . Review of solid/liquid desiccant in the drying applications and its regeneration methods[J]. Renewable and Sustainable Energy Reviews, 2012, 16: 4686-4707.
15 沈胜强, 周士鹤 . 大型低温多效蒸发海水淡化装置传热过程热力损失分析[J]. 化工学报, 2014, 65(9): 3366-3374.
Shen S Q , Zhou S H . Analysis of thermodynamic losses of heat transfer process in large-scale LT-MED desalination plant[J]. CIESC Journal, 2014, 65(9): 3366-3374.
16 Shin H T , Lee Y P . Spherical-shaped ice particle production by spraying water in a vacuum chamber[J]. Applied Thermal Engineering, 2000, 20(5): 439-454.
17 Cheng W , Chen H . Effect of droplet flash evaporation on vacuum flash evaporation cooling: modeling[J]. International Journal of Heat and Mass Transfer, 2015, 84: 149-157.
18 Kim B S , Shin H T . Study on ice slurry production by water spray[J]. International Journal of Refrigeration, 2001, 24(2): 176-184.
19 Wu Y Y , Zhang X S , Zhang X L , et al . Modeling and experimental study of vapor phase-diffusion driven sessile drop evaporation[J]. Applied Thermal Engineering, 2014, 70(1): 560-564.
20 Owen I , Jalil J M . Heterogeneous flashing in water drops[J]. International Journal Multiphase Flow, 1991, 17(5): 653-660.
21 季璨, 王乃华, 崔峥, 等 . Jakob 数在高温高压闪蒸过程中的作用及影响[J]. 化工学报, 2016, 67(10): 4153-4159.
Ji C , Wang N H , Cui Z , et al . Role and influence of characteristic Jakob number in high-temperature and high-pressure flash evaporation process[J]. CIESC Journal, 2016, 67(10): 4153-4159.
22 高文忠, 时亚茹 . 多元盐除湿溶液的闪蒸再生机理研究进展综述[J]. 制冷, 2012, 31(4): 24-29.
Gao W Z , Shi Y R . Survey on flashing regeneration mechanism of multielement salt desiccant solution[J]. Refrigeration, 2012, 31(4): 24-29.
23 时亚茹, 王民民, 高文忠 . 氯化锂溶液液滴真空闪蒸影响因素的研究[J]. 制冷, 2014, (2): 7-11.
Shi Y R , Wang M M , Gao W Z . Study on the influence factor of the flashing of lithium chloride solution droplet in vacuum[J]. Refrigeration, 2014, (2): 7-11.
24 高文忠, 时亚茹 . 氯化钙溶液液滴真空闪蒸再生的实验研究[J]. 真空科学与技术学报, 2014, 34(9): 900-904.
Gao W Z , Shi Y R . Concentrating CaCl2 droplets by fast evaporation of water in vacuum[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(9): 900-904.
25 Gao W Z , Shi Y R . Experimental investigation on a new method of regenerating dehumidification solution-release solution droplet into vacuum[J]. Applied Thermal Engineering, 2013, 59(1/2): 14-20.
26 Conde M R . Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design[J]. International Journal of Thermal Sciences, 2004, 43(4): 367-382.
27 易晓勤 . 常用溶液除湿剂的性质研究[D]. 北京: 清华大学, 2009.
Yi X Q . Study on the characteristics of conventional liquid desiccants[J]. Beijing: Tsinghua University, 2009.
28 赵云 . 太阳能液体除湿空调系统的研究[D]. 南京: 东南大学, 2002.
Zhao Y . Research on the solar liquid desiccant air-condition system[D]. Nanjing: Southeast University, 2002.
29 Schrage R W . A Theoretical Study of Interface Mass Transfer[M]. New York: Columbia University Press, 1953.
30 杨世铭, 陶文铨 . 传热学[M]. 北京: 高等教育出版社, 2013: 113-123.
Yang S M , Tao W Q . Heat Transfer[M]. Beijing: Higher Education Press, 2013: 113-123.
31 GBT19923—2005. 城市污水再生利用——工业用水水质[S]. 2005.GBT 19923—2005. The reuse of urban recycling water—water quality standard for industrial uses[S]. 2005.
[1] 王辉辉, 张丹, 杨庆忠, 牛照程. 纯水静态闪蒸中液膜高度演变的实验研究[J]. 化工学报, 2019, 70(S1): 54-60.
[2] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[3] 郭月莹, 谢建良, 彭波. 可见高吸收红外高反射薄膜制备及光学特性研究[J]. 化工学报, 2019, 70(6): 2325-2333.
[4] 曲江源, 齐娜娜, 关彦军, 滕阳, 徐文青, 朱廷钰, 张锴. 湿法烟气脱硫塔内传递与化学反应过程CFD模拟[J]. 化工学报, 2019, 70(6): 2117-2128.
[5] 孙燕, 蓝际荣, 郭莉, 孙朋, 叶恒朋, 杜冬云, 占伟. 利用电解锰渣制备As(Ⅲ)吸附材料及其性能研究[J]. 化工学报, 2019, 70(6): 2377-2385.
[6] 彭婷, 袁中原, 袁艳平, 曹晓玲. 圆筒形地下立体停车库火灾火源位置与火势蔓延规律研究[J]. 化工学报, 2019, 70(6): 2397-2408.
[7] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[8] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[9] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[10] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[11] 朱勇晨, 李小华, 张小雷, 胡超, 董文斌, 程静峰, 邵珊珊. NTP再生La改性多级孔HZSM-5及催化提质生物油的试验研究[J]. 化工学报, 2019, 70(5): 1795-1803.
[12] 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308.
[13] 林茂, 李伙生, 张高生, 张平, 龙建友, 肖唐付, 张鸿郭, 熊静芳, 陈永亨. 铁酸镍基水热炭协同次氯酸根氧化去除废水中铊[J]. 化工学报, 2019, 70(4): 1591-1604.
[14] 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
[15] 李艳鹰, 李先春. 生物质活性炭负载零价铁纳米晶簇直接催化还原NO[J]. 化工学报, 2019, 70(3): 1111-1119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 游晓艳, 秦炜, 戴猷元. Phase Separation Behavior of Cocamidopropyl Betaine/Water/Polyethylene Glycol System[J]. , 2009, 17(5): 746 -749 .
[2] 耿艳楼, 胡利彦, 赵新强, 安华良, 王延吉. Synthesis of 4,4'-MDC in the Presence of Sulfonic Acid-functionalized Ionic Liquids[J]. , 2009, 17(5): 756 -760 .
[3] 郑辉东, 王碧玉, 吴燕翔, 任其龙. Instability Mechanisms of Supported Liquid Membrane for Phenol Transport[J]. , 2009, 17(5): 750 -755 .
[4] 徐泽辉, 夏蓉晖, 郭世卓, 范存良, 房鼎业. Improvement of Isomerization Process of Crude Isoamylene with Tertiary-amyl-alcohol Addition[J]. , 2009, 17(5): 761 -766 .
[5] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[6] 印佳敏, 吴占松. Corrosion Behavior of TP316L of Superheater in Biomass Boiler with Simulated Atmosphere and Deposit[J]. , 2009, 17(5): 849 -853 .
[7] 陈育如, 虞启明, 徐红卫, 陈雁. Oxygen Transfer and Hydrodynamics in a Flexible Fibre Biofilm Reactor for Wastewater Treatment[J]. , 2009, 17(5): 879 -882 .
[8] 黄雪莉, 李松菀. Liquid-solid Equilibria in Quinary System Na+, K+, Mg2+//Cl-, NO3--H2O at 25℃[J]. , 2011, 19(1): 101 -107 .
[9] 罗小明, 何利民, 马华伟. Flow Pattern and Pressure Fluctuation of Severe Slugging in Pipeline-riser System[J]. , 2011, 19(1): 26 -32 .
[10] 蔡双飞, 王利生. Epoxidation of Unsaturated Fatty Acid Methyl Esters in the Presence of SO3H-functional Brφnsted Acidic Ionic Liquid as Catalyst[J]. , 2011, 19(1): 57 -63 .