化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1713-1722.doi: 10.11949/j.issn.0438-1157.20181269

• 流体力学与传递现象 • 上一篇    下一篇

新型蜂巢式液冷动力电池模块传热特性研究

冯能莲1(),马瑞锦1,陈龙科2,董士康1,王小凤3,张星宇3   

  1. 1. 北京工业大学环境与能源工程学院,北京 100124
    2. 上海奔悦人工智能科技有限责任公司,上海 200233
    3. 新能科技香港有限公司,中国 香港
  • 收稿日期:2018-10-29 修回日期:2019-01-25 出版日期:2019-05-05 发布日期:2019-05-10
  • 通讯作者: 冯能莲 E-mail:fengnl@bjut.edu.cn
  • 作者简介:冯能莲(1962—),男,博士,教授,<email>fengnl@bjut.edu.cn</email>
  • 基金资助:
    国家自然科学基金项目(51075010);北京市教育委员会重点项目(KZ200910005007)

Heat transfer characteristics of honeycomb liquid-cooled power battery module

Nenglian FENG1(),Ruijin MA1,Longke CHEN2,Shikang DONG1,Xiaofeng WANG3,Xingyu ZHANG3   

  1. 1. College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
    2. Shanghai Benyue Artificial Intelligence Technology Co., Ltd., Shanghai 200233, China
    3. Xinen Technology Hong Kong Co., Ltd., Hong Kong, China
  • Received:2018-10-29 Revised:2019-01-25 Online:2019-05-05 Published:2019-05-10
  • Contact: Nenglian FENG E-mail:fengnl@bjut.edu.cn

摘要:

为了维持动力电池的性能、延长其使用寿命,应使电池模块工作过程中的温度和温差维持在适宜的范围之内。为此,提出一种新型蜂巢式液冷动力电池模块,该结构内部设有进/出口导流板且电池呈蜂巢式分布,冷却液体与电池呈360°间接接触,极大强化了换热效果。在单体电池热特性数值模拟与试验验证的基础上,通过计算流体力学平台建立新型蜂巢式液冷电池模块模型,研究了电池模块的热行为,分析了冷却液流量、冷却液温度对电池模块传热性能的影响。结果表明:(1)增加冷却液流量可显著降低电池模块最高温度,改善温度均匀性,当冷却液流量增加到1.5 L/min之后,电池模块最高温度及最大温差趋于稳定;(2)冷却液温度的降低可显著降低电池模块中最高温度,但在一定程度上恶化了模块中的温度均匀性;(3)冷却液流量和温度对电池模块的加热特性影响显著。因此,采用液冷方式是必要的。

关键词: 单体电池, 数值模拟, 蜂巢式液冷动力电池模块, 实验验证, 模型, 传热性能

Abstract:

To maintain the performance of the power battery and prolong its service life, the temperature and temperature difference during the operation of the battery module should be maintained within an appropriate range. Thus, a new type of honeycomb liquid-cooled power battery module is proposed. The structure has an inlet/outlet guide plate inside and the battery is honeycomb-like distribution. The cooling liquid contacts with the battery indirectly at 360°, which greatly strengthens the heat transfer effect. On the basis of the numerical simulation and experimental validation of the thermal characteristics of single battery, a new model of honeycomb liquid-cooled battery module was established by computational fluid dynamics(CFD) platform, the thermal behavior of the battery module was studied, and the effects of the coolant flow rate, the coolant temperature of battery on the heat dissipation performance of the battery module were studied. The results show that: (1) Increasing the flow rate of coolant can significantly reduce the maximum temperature of the battery module and improve the temperature uniformity, when the flow rate of coolant increases to 1.5 L/min, the maximum temperature and the maximum temperature difference of the battery module tend to be stable; (2) Decreasing the temperature of coolant can significantly reduce the highest temperature of the battery module, but to a certain extent, the temperature uniformity in the battery module is deteriorated; (3) The coolant flow rate and the coolant temperature have significant influence on the heating characteristics of the battery module. Therefore, liquid cooling is necessary.

Key words: single battery, numerical simulation, honeycomb liquid-cooled power battery module, experimental validation, model, heat transfer performance

中图分类号: 

  • TQ 028.8

图1

电池模块模型"

表1

M60主要材料物性参数"

材料 ρ/(kg/m3) cp /(J/(kg·K)) k/(W/(m·K))
铝合金 2700 880 193
空气 1.225 1006.43 0.0242
冷却液 1073.35 3291 0.38
电池 2804.7 950 2/2/15

图2

电池模块模型网格质量检查"

图3

电池性能测试试验平台结构"

图4

单体电池温升仿真与试验结果对比"

图5

冷却液流量为0.5 L/min 时电池模块的散热特性温度分布"

图6

散热工况下不同冷却液流量下电池模块T max随时间的变化"

图7

散热工况下不同冷却液流量下电池模块T diff随放电时间的变化"

图8

冷却液温度为20℃时电池模块的散热特性温度分布"

图9

散热工况下不同冷却液温度下电池模块T max随时间的变化"

图10

散热工况下不同冷却液温度下电池模块T diff随时间的变化"

图11

冷却液流量为0.5 L/min时电池模块加热特性的温度分布"

图12

加热工况下不同冷却液流量下电池模块T max随时间的变化"

图13

加热工况下不同冷却液流量下电池模块T diff随时间的变化"

图14

冷却液温度为30℃时电池模块的加热特性温度分布"

图15

加热工况下不同冷却液温度下电池模块T max随时间的变化"

图16

加热工况下不同冷却液温度下电池模块T diff随时间的变化"

1 Greco A , Jiang X , Cao D P . An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite[J]. Journal of Power Sources, 2015, 278: 50-68.
2 Ling Z Y , Zhang Z G , Shi G Q , et al . Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules[J]. Renew. Sustain. Energy Rev., 2014, 31: 427-438.
3 Zhao J T , Rao Z H , Huo Y T , et al . Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles[J]. Appl. Therm. Eng., 2015, 85: 33-43.
4 Malik M , Dincer I , Rosen M A . Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles[J]. Int. J. Energy Res., 2016, 40(8): 1011-1031.
5 Chacko S , Chung Y M . Thermal modeling of Li-ion polymer battery for electric vehicle drive cycles[J]. Journal of Power Sources, 2012, 213(9): 296-303.
6 Liu R , Chen J X , Xun J Z , et al . Numerical investigation of thermal behaviors in lithium-ion battery stack discharge[J]. Appl. Energy, 2014, 132: 288-97.
7 Manzetti S , Mariasiu F . Electric vehicle battery technologies: from present state to future systems[J]. Renew. Sustain. Energy Rev., 2015, 51: 1004-1012.
8 Shah K , Chalise D , Jain A . Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells[J]. Journal of Power Sources, 2016, 330: 167-174.
9 Wilke S , Schweitzer B , Khateeb S , et al . Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study[J]. Journal of Power Sources, 2017, 340: 51-59.
10 Wang H , Lara-Curzio E , Rule E T , et al . Winchester, mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries[J]. Journal of Power Sources, 2017, 342: 913-920.
11 Pesaran A A . Battery thermal management in EVs and HEVs: issues and solutions[C]//Advanced Automotive Battery Conference. Nevada, 2001.
12 Klein M , Tong S , Park J W . In-plane nonuniform temperature effects on the performance of a large-format lithium-ion pouch cell[J]. Appl. Energy, 2016, 165: 639-647.
13 Zhao C R , Cao W J , Dong T , et al . Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow[J]. International Journal of Heat and Mass Transfer, 2018, 120: 751-762.
14 Liu Z , Wang Y , Zhang J , et al . Shortcut computation for the thermal management of a large air-cooled battery pack[J]. Appl. Therm. Eng., 2014, 66: 445-452.
15 Xu X M , He R . Review on the heat dissipation performance of battery pack with different structures and operation conditions[J]. Renew. Sustain. Energy Rev., 2014, 29: 301-315.
16 Yu K , Yang X , Cheng Y , et al . Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack [J]. Journal of Power Sources, 2014, 270: 193-200.
17 Chen D F , Jiang J C , Kim G H , et al . Comparison of different cooling methods for lithium ion battery cells[J]. Appl. Therm. Eng., 2016, 94: 846-854.
18 Rao Z H , Wang S F , Zhang Y L . Thermal management with phase change material for a power battery under cold temperatures[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36(20): 2287-2295.
19 Duan X , Naterer G F . Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5176-5182.
20 Javani N , Dincer I , Naterer G F , et al . Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles[J]. Int. J. Heat Mass Transf., 2014, 72: 690-703.
21 Lin C J , Xu S C , Chang G F , et al . Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets[J]. Journal of Power Sources, 2015, 275: 742-749.
22 Nelson P , Dees D , Amine K , et al . Modeling thermal management of lithium-ion PNGV batteries[J]. Journal of Power Sources, 2002, 110(2): 349-356.
23 Zhang T S , Gao C , Gao Q , et al . Status and development of electric vehicle integrated thermal management from BTM to HVAC[J]. Appl. Therm. Eng., 2015, 88: 398-409.
24 Chen D , Jiang J , Kim G H , et al . Comparison of different cooling methods for lithium ion battery cells[J]. Appl. Therm. Eng., 2016, 94: 846-854.
25 Yuan H , Wang L F . Battery thermal management system with liquid cooling and heating in electric vehicles[J]. J. Automotive Safety and Energy, 2012, 3(4): 371-380.
26 Liu R , Chen J X , Xun J Z , et al . Numerical investigation of thermal behaviors in lithium-ion battery stack discharge[J]. Applied Energy, 2014, 132: 288-297.
27 Jarrett A , Kim I Y . Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J]. Journal of Power Sources, 2014, 245: 644-655.
28 Adams D , Berdichevsky E , Colson T , et al . Battery pack thermal management system: US2009/0023056A1[P]. 2009-01-22.
29 安徽新能科技有限公司 . 一种用于新能源电动汽车中冷却箱的焊接: 106181082A[P]. 2016-07-10.
Anhui Xinen Technology Company . A welding method for cooling box of new energy electric vehicle: 106181082A[P]. 2016-07-10.
30 Nishi Y . Lithium ion batteries: past 10 years and the future[J]. Journal of Power Sources, 2001, 100: 101-106.
31 Chen S C , Wan C C , Wang Y Y . Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140: 111-124.
32 Saw L H , Ye Y H , Tay A A O . Electrochemical–thermal analysis of 18650 lithium iron phosphate cell[J]. Energy Convers. Manage., 2013, 75: 162-174.
33 Emre G , Özgür E , Murat K . 3-D CFD modeling and experimental testing of thermal behavior of a Li-ion battery[J]. Applied Thermal Engineering, 2017, 120: 484-495.
[1] 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
[2] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[3] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[4] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[5] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[6] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[7] 汪勤, 张冰剑, 何畅, 陈清林. 基于能量目标的芳烃萃取精馏溶剂评价模型[J]. 化工学报, 2019, 70(5): 1815-1822.
[8] 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831.
[9] 邱君君, 张小松, 李玮豪. 无霜空气源热泵系统冬季除湿性能初步实验[J]. 化工学报, 2019, 70(4): 1605-1613.
[10] 杜文欣, 伍联营, 张伟涛, 陈灿, 胡仰栋. 钢球在液体中振动磨损量的研究[J]. 化工学报, 2019, 70(4): 1505-1511.
[11] 朱明汉, 白鹏飞, 胡艳鑫, 黄金. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357.
[12] 杨世品, 黄振, 李丽娟, 宋健全, 叶景, 汪辉. 复杂化工过程失配子模型深度诊断与修正算法[J]. 化工学报, 2019, 70(4): 1485-1493.
[13] 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308.
[14] 梁倩卿, 马学虎, 王凯, 春江, 郝婷婷, 兰忠, 王亚雄. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281.
[15] 梁文胜, 刘江涛, 赵月, 黄伟, 左志军. NiO和Ni催化剂对苯甲酸热解机理的理论计算[J]. 化工学报, 2019, 70(4): 1429-1435.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .