化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 86-92.doi: 10.11949/j.issn.0438-1157.20181268

• 流体力学与传递现象 • 上一篇    下一篇

泡沫金属铜/石蜡相变蓄热过程的数值模拟

陈华(),柳秀丽(),杨亚星,钟丽琼,王蕾,高娜   

  1. 天津商业大学天津市制冷技术重点实验室,天津 300134
  • 收稿日期:2018-10-29 修回日期:2018-11-15 出版日期:2019-03-31 发布日期:2019-04-26
  • 通讯作者: 柳秀丽 E-mail:florahchen@163.com;1306594284@qq.com
  • 作者简介:<named-content content-type="corresp-name">陈华</named-content>(1972—),女,博士,教授,<email>florahchen@163.com</email>|柳秀丽(1993—),女,硕士,<email>1306594284@qq.com</email>

Numerical simulation of foam metal copper/paraffin phase change thermal storage process

Hua CHEN(),Xiuli LIU(),Yaxing YANG,Liqiong ZHONG,Lei WANG,Na GAO   

  1. Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, China
  • Received:2018-10-29 Revised:2018-11-15 Online:2019-03-31 Published:2019-04-26
  • Contact: Xiuli LIU E-mail:florahchen@163.com;1306594284@qq.com

摘要:

在装有纯石蜡的相变蓄热箱中加入泡沫金属铜,利用Fluent软件,模拟研究石蜡相变蓄热箱在加入泡沫金属铜后,箱内石蜡温度分布的均匀性、稳定性及相变蓄热的变化规律。模拟结果显示,泡沫金属铜的加入,大大提高了石蜡的蓄热性能,缩短了石蜡相变的时间;且加入泡沫铜后,石蜡内部温差明显减小,温度分布更加均匀,并且有效缓解了自然对流造成的顶部过热和底部不熔化现象。数值模拟结果与实验测试数据平均误差15.7%,与实测值吻合较好。

关键词: 相变蓄热, 泡沫金属铜, 冷凝热回收, 数值模拟, 对流, 热传导

Abstract:

The uniformity and stability of the paraffin temperature distribution in the phase change heat storage box with the addition of foam copper into the pure paraffin were predicted by Fluent software. The simulated results showed that the addition of foam copper greatly improved the heat recovery performance of paraffin and shortened paraffin phase transition time. Moreover, after adding foam copper, the paraffin inside temperature difference decreased significantly, the temperature distribution became more uniform, and top overheating and bottom un-melting caused by nature convection were effectively alleviated. The average error between the simulated results and test data were within 15.7%, which was in good agreement with the measured values.

Key words: phase change heat storage, foamed metal copper, condensation heat recovery, numerical simulation, convection, heat conduction

中图分类号: 

  • TU 831.6

图1

相变蓄热装置物理模型"

图2

箱体结构及热电偶测点布置图"

图4

石蜡相变蓄热箱内相变过程中液相率随时间的变化情况"

图5

纯石蜡与加入泡沫铜的石蜡液相率变化规律"

图6

石蜡相变蓄热箱内相变过程中温度场随时间的变化情况"

图7

相变箱测点1温度模拟值比较"

图8

相变箱测点2温度模拟值比较"

图9

相变箱测点3温度模拟值比较"

1 王侃宏, 谷铁柱, 桂林平, 等. 蓄热技术在太阳能地源热泵中的应用及模拟[J]. 河北工程大学学报(自然科学版), 2008,(1): 63-67.
WangK H, GuT Z, GuiL P, et al. Application and simulation of thermal storage technology in solar-ground source heat pump[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2008,(1): 63-67.
2 高轩. Y型纵翅片管式相变蓄热过程模拟与优化[D]. 兰州: 兰州理工大学, 2016.
GaoX. Simulation and optimization of Y-type longitudinal finned tubular phase change heat storage process [D]. Lanzhou: Lanzhou University of Technology, 2016.
3 柳文洁. 热水蓄热罐在热电联产供热系统中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
LiuW J. Application of hot water storage tank in co-generation heat supply system [D]. Harbin: Harbin Institute of Technology, 2016.
4 李东, 张学湛, 丁国伟. 低热值煤气双蓄热技术在薄板坯连铸连轧辊底式加热炉应用的探讨[C]//全国薄板坯连铸连轧生产技术研讨会. 本溪: 中国金属学会, 2017: 134-140.
LiD, ZhangX Z, DingG W. Discussion on the application of low calorific value gas double-storage technology in the heating furnace of thin slab continuous casting and rolling[C]// Proceedings of National Symposium on Thin Slab Continuous Casting and Rolling Technology. Benxi: China Institute of Metals, 2017: 134-140.
5 鲍恩财, 曹晏飞, 邹志荣, 等. 节能日光温室蓄热技术研究进展[J]. 农业工程学报, 2018, 34(6): 1-14.
BaoE C, CaoY F, ZouZ R, et al. Research progress of heat storage technology in energy-saving solar greenhouses [J]. Journal of Agricultural Engineering, 2018, 34(6): 1-14.
6 杨洋. 乳品厂的余热回收应用及板式换热器传热的研究[D]. 哈尔滨: 哈尔滨商业大学, 2016.
YangY. Waste heat recovery application of dairy plant and heat transfer of plate heat exchanger [D]. Harbin: Harbin University of Commerce, 2016.
7 李广华. 基于两种热力循环的内燃机余热回收系统的研究[D]. 天津: 天津大学, 2016.
LiG H. Research on residual heat recovery system of internal combustion engine based on two kinds of thermodynamic cycles [D]. Tianjin: Tianjin University, 2016.
8 冯红翠. 基于超结构MINL P模型及遗传算法的烧结余热发电系统优化设计[D]. 杭州: 浙江大学, 2015.
FengH C. Optimization design of sintering waste heat power generation system based on superstructure MINLP model and genetic algorithm[D]. Hangzhou: Zhejiang University, 2015.
9 徐治国, 赵长颖, 纪育楠, 等. 中低温相变蓄热的研究进展[J]. 储能科学与技术, 2014, 3(3): 179-190.
XuZ G, ZhaoC Y, JiY N, et al. Research progress of medium and low temperature phase change heat storage [J]. Energy Storage Science and Technology, 2014, 3(3): 179-190.
10 李文昕.绿色精量消费模式下的城市规划与设计策略研究[D]. 长沙: 湖南大学, 2010.
LiW X. Study on urban planning and design strategy under green precision consumption mode[D]. Changsha: Hunan University, 2010.
11 史德福. 三种不同冷凝热回收方式下空调系统性能研究[D]. 天津: 天津商业大学, 2013.
ShiD F. Study on the performance of air conditioning system under three different condensing heat recovery modes [D]. Tianjin: Tianjin University of Commerce, 2013.
12 刘芬, 祝仰勇. 热泵精馏技术在煤焦化工艺中的应用分析[J]. 山东冶金, 2012, 34(2): 57-58.
LiuF, ZhuY Y. Application analysis of heat pump distillation technology in coal coking process[J]. Shandong Metallurgy, 2012, 34(2): 57-58.
13 张川.采用小温差换热末端的空气源热泵空调系统性能研究[D]. 上海: 上海交通大学, 2015.
ZhangC. Study on the performance of air source heat pump air conditioning system with small temperature difference heat exchange end [D]. Shanghai: Shanghai Jiao Tong University, 2015.
14 李俊. 基于PostgreSQL集群的能源数据采集存储系统的研究与实现[D]. 广州: 华南理工大学, 2013.
LiJ. Research and implementation of energy data acquisition and storage system based on PostgreSQL cluster[D]. Guangzhou: South China University of Technology, 2013.
15 胡振东, 王腾跃, 王惠文. 提高热水器能源利用率——一种基于逆流热交换的热水器余热回收装置研究[J]. 环境与发展, 2017, 29(6): 108-109.
HuZ D, WangT Y, WangH W. Improving energy efficiency of water heater—a study on waste heat recovery device of water heater based on counter current heat exchange[J]. Environment and Development, 2017, 29(6): 108-109.
16 王倩. 我国能源消费现状及其优化策略[J]. 商业经济研究, 2018,(17): 40-42.
WangQ. The status quo of energy consumption in china and its optimization strategy[J]. Commercial Economic Research, 2018,(17): 40-42.
17 马俊. 公共建筑可再生能源利用率计算方法研究[J]. 绿色建筑, 2018, 10(2):29-31.
MaJ. Study on calculation method of renewable energy utilization rate of public buildings[J]. Green Building, 2018, 10(2): 29-31.
18 刘佳佳. 相变蓄热器性能与强化传热研究[D].北京:华北电力大学, 2017.
LiuJ J. Research on performance and enhanced heat transfer of phase change accumulator [D]. Beijing:North China Electric Power University, 2017.
19 梁之西, 王海月, 祁祥松, 等. 基于Fluent软件的管道的流场数值模拟[J]. 南方农机, 2017, 48(16):111.
LiangZ X, WangH Y, QiX S, et al. Numerical simulation of flow field of pipeline based on Fluent software[J]. China Southern Agricultural Machinery, 2017, 48(16): 111.
20 雷娅蓉. 基于Fluent软件在变频多联机设计中的应用分析[J]. 科技创新与应用, 2018, 1(24): 151-152.
LeiY R. Application analysis of frequency-based line design based on Fluent software[J]. Science & Technology Innovation and Application, 2018, 1(24): 151-152.
21 刘宇飞, 章学来, 华维三, 等. 相变蓄热式集热器蓄放热数值与实验分析[J]. 太阳能学报, 2017, 38(9): 2486-2492.
LiuY F, ZhangX L, HuaW S, et al. Numerical and experimental analysis of heat storage and release of phase change regenerative collectors[J]. Acta Energiae Solaris Sinica, 2017, 38(9): 2486-2492.
22 于萍, 郭华锋. FLUENT软件在工程流体力学教学中的应用[J]. 教育教学论坛, 2018, 18(16): 271-272.
YuP, GuoH F. Application of FLUENT software in engineering fluid mechanics teaching[J]. Education and Teaching Forum, 2018, 18(16): 271-272.
23 康艳兵, 张寅平, 江亿, 等. 相变蓄热球体堆积床传热模型及热性能分析[J]. 清华大学学报(自然科学版), 2000, 40(2): 106-109.
KangY B, ZhangY P, JiangY, et al. Heat transfer model and thermal performance analysis of phase change heat storage sphere packed bed[J]. Journal of Tsinghua University (Science and Technology), 2000, 40(2): 106-109.
24 崔海亭, 袁修干, 侯欣宾. 高温固液相变蓄热容器的研究与发展[J]. 太阳能学报, 2002, 23(3): 383-386.
CuiH T, YuanX G, HouX B. Research and development of high temperature solid-liquid phase change heat storage containers[J]. Journal of Solar Energy, 2002, 23(3): 383-386.
25 邢玉明, 袁修干, 王长和. 空间站高温固液相变蓄热容器的实验研究[J]. 航空动力学报, 2001, 3(161): 74-79.
XingY M, YuanX G, WangC H. Experimental study on high temperature solid-liquid phase change heat storage vessel in space station[J]. Journal of Aerospace Power, 2001, 3(161): 74-79.
26 PyX, OlivesR, MauranS. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material[J]. International Journal of Heat & Mass Transfer, 2001, 44(14): 2727-2737.
27 王俊. 石蜡熔化蓄热的实验和理论研究[D]. 西安: 西安交通大学, 2002.
WangJ. Experimental and theoretical study on the melting and heat storage of paraffin[D]. Xi an: Xi an Jiaotong University, 2002.
28 程文龙, 韦文静. 高孔隙率泡沫金属相变材料储能、传热特性[J]. 太阳能学报, 2007, 28(7): 739-744.
ChengW L, WeiW J. Energy storage and heat transfer characteristics of high porosity foam metal phase change materials [J]. Journal of Solar Energy, 2007, 28(7): 739-744.
29 夏莉, 张鹏, 周圆, 等. 石蜡与石蜡/膨胀石墨复合材料充/放热性能研究[J]. 太阳能学报, 2010, 31(5): 610-614.
XiaL, ZhangP, ZhouY, et al. Study on charge/discharge performance of paraffin and paraffin/expanded graphite composites [J]. Journal of Solar Energy, 2010, 31(5): 610-614.
30 朱家玲, 李慧, 张伟. 螺旋管式相变蓄热过程的数值模拟与系统优化[J]. 天津大学学报(自然科学与工程技术版), 2012,(10): 875-880.
ZhuJ L, LiH, ZhangW. Numerical simulation and system optimization of spiral tube phase change thermal storage process[J]. Journal of Tianjin University (Natural Science and Engineering Technology), 2012,(10): 875-880.
[1] 杨浩, 闫二艳. 基于束能推进的微波加热效率仿真[J]. 化工学报, 2019, 70(S1): 93-98.
[2] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[3] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[4] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[5] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[6] 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308.
[7] 吴晅, 李晓瑞, 马骏, 秦梦竹, 周雅慧, 李海广. 不同管口浸没方式下气泡生成行为特性[J]. 化工学报, 2019, 70(3): 901-912.
[8] 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
[9] 陈传刚, 丁雪兴, 陆俊杰, 张伟政, 陈金林. 摩擦副界面微造型序列对气体密封性能的影响[J]. 化工学报, 2019, 70(3): 1016-1026.
[10] 施素丽, 鹿院卫, 于强, 吴玉庭. 熔盐单罐释热过程换热器取热方式优选[J]. 化工学报, 2019, 70(3): 857-864.
[11] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
[12] 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
[13] 倪城振, 杜文莉, 胡贵华. 乙烯裂解炉耦合模拟中湍流模型的影响分析[J]. 化工学报, 2019, 70(2): 450-459.
[14] 夏红桃, 邹思宇, 肖杰. 随机粗糙表面上剪切变稀流体液滴的沉积过程模拟[J]. 化工学报, 2019, 70(2): 634-645.
[15] 熊攀, 鄢曙光, 刘玮寅. 基于响应曲面法的旋风分离器结构优化[J]. 化工学报, 2019, 70(1): 154-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .