化工学报 ›› 2018, Vol. 69 ›› Issue (S2): 17-25.doi: 10.11949/j.issn.0438-1157.20181262

• 综述与专论 • 上一篇    下一篇

相变储能技术在汽车节能中的应用进展

张亮, 史忠科   

  1. 西北工业大学自动化学院, 陕西 西安 710129
  • 收稿日期:2018-10-25 修回日期:2018-11-02
  • 通讯作者: 史忠科 E-mail:shizknwpu@126.com

Application of phase change materials in automobile energy saving

ZHANG Liang, SHI Zhongke   

  1. School of Automation, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China
  • Received:2018-10-25 Revised:2018-11-02

摘要:

目前,汽车已经成为人们工作和生活不可缺少的交通工具,与此同时汽车也成为环境污染的重点源头,为了节约能源,减少环境污染,实现人类社会的可持续发展,发展新能源汽车已成为世界各国的汽车生产和使用的主要趋势和基本政策。动力电池的温度控制是电动汽车的关键技术,为了解决锂电池的温度不稳定问题,提高新能源汽车锂电池的安全性能,许多学者研究了PCM应用于锂电池控温技术和热性能,并且通过加入金属、石墨、纤维素等化合物以改善电池传热性能,还用计算机模拟的方法,建立起热传导的数学方程式,为PCM在锂电池的应用提供理论依据。此外,将PCM应用于汽车尾气排放过程中的能源回收和汽车室内温度调节过程也是汽车节能的研究方向,这些过程可以采用主动式或者被动式的控温和制冷。不仅可以减少汽车运行过程中对环境的污染,节约能源,提高汽车的安全性,而且还能保持汽车在运行和停止过程中室内的温度恒定,提高车乘人员的舒适程度,有利于车乘人员的身心健康。

Abstract:

At present, the automobile has become an indispensable transportation tool of work and life. At the same time the automobile also becomes the main source of environmental pollution. To save the energy, reduce the environmental pollution and realize sustainable development, the research of new energy vehicles has become the main trend and a basic policy of world's automobile production and usage. Temperature control of power battery is one of the key technologies of electric vehicle. The temperature control technology and thermal properties of PCM used in lithium batteries have been studied by scholars to solve the temperature instability and improve the safety performance of lithium batteries in new energy vehicles. By adding compounds such as metal, graphite and cellulose, the heat transfer performance of the battery had been improved. The mathematical equation of heat conduction established by computer simulation provides a theoretical basis for the application of PCM in lithium battery. In addition, the applications of PCM in energy recovery of vehicle exhaust and indoor temperature control are the research direction of vehicle energy saving. These process of indoor temperature control by PCM can be active or passive. This not only reduces the pollution during automobile operation, but also saves energy and enhances the safety of automobiles. Meanwhile, it keeps the temperature constant during the process of move and stop, and then the passengers will be more comfortable.

中图分类号: 

  • TQ021.3

[1] ORÓ E, GRACIA A D, CASTELL A, et al.Review on phase change materials (PCMs) for cold thermal energy storage applications[J].Applied Energy, 2012, 99:513-533.
[2] TELKES M.Thermal storage for solar heating and cooling[C]//Proceedings of the Workshop on Solar Energy Storage Subsystems for the Heating and Cooling of Buildings.Charlottesville, Virginia, 1975.
[3] 叶为标.热泵相变储能换热器强化传热数值模拟和实验研究[D].广州:华南理工大学, 2012. YE W B.Enhanced heat transfer numerical simulation and experimental research on phase change thermal energy storage heat exchanger of heat pump[D].Guangzhou:South China University of Technology, 2012.
[4] 吴淑英.纳米复合蓄热材料强化相变传热实验与数值模拟研究[D].广州:华南理工大学, 2010. WU S Y.Enhanced heat transfer experimental and simulation research of nanocomposite phase change materials[D].Guangzhou:South China University of Technology, 2010.
[5] DU K, JOHN C, WANG Z H, et al.A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges[J].Applied Energy, 2018, 220:242-273.
[6] JOSE P D C, PHILIP E.Thermal energy storage for low and medium temperature applications using phase change materials-a review[J].Applied Energy, 2016, 177:227-238.
[7] 崔艳琦.相变控温调湿建筑复合材料的研究进展[J].化工学报, 2018, 69(S1):1-7. CUI Y Q.Research on development of composite phase change humidity-control material in buildings[J].CIESC Journal, 2018, 69(S1):1-7.
[8] SHARMA A, TYAGI V V, CHEN C R, et al.Review on thermal energy storage with phase change materials and applications[J].Renewable and Sustainable Energy Reviews, 2009, 13(2):318-345.
[9] SAFFARI M, GRACIA A D, USHAK S, et al.Passive cooling of buildings with phase change materials using whole-building energy simulation tools:a review[J].Renewable and Sustainable Energy Reviews, 2017, 80:1239-1255.
[10] 崔艳琦.相变材料热性能及其在室内被动式储能系统的简易计算[J].储能科学与技术, 2017, 6(2):302-306. CUI Y Q.Thermal properties of phase change materials (PCM) and their concise calculations for passive storage[J].Energy Storage Science and Technology, 2017, 6(2):302-306.
[11] 张亮, 史忠科.相变材料(PCM)储能器在自动控温系统的应用[J].计算机与应用化学, 2017, 34(7):528-532. ZHANG L, SHI Z K.Review on energy storage systems with PCM for temperature control[J].Computers and Applied Chemistry, 2017, 34(7):528-532.
[12] OICA.Production statistics and sales statistics[EB/OL].[2018-4-1].http://www.oica.net/.
[13] 房丛丛, 钱焕群.相变蓄热技术及其应用[J].节能, 2011, 30(Z2):27-30+4. FANG C C, QIAN H Q.Research and application of thermal storage with phase change materials[J].Energy Conservation, 2011, 30(Z2):27-30+4.
[14] 胡阳, 宣卫红, 黄冬辉.相变材料在建筑节能中的应用研究[J].工业安全与环保, 2017, 43(12):82-85.
HU Y, XUAN W H, HUANG D H.Research and application of phase change materials in building energy saving[J].Industrial Safety and Environmental Protection, 2017, 43(12):82-85.
[15] 李志生, 张姝婷.相变材料的研究进展与应用综述[J].建筑节能, 2016, 44(4):57-60+107.
LI Z S, ZHANG S T.Research progress and application of phase change materials[J].Building Energy Efficiency, 2016, 44(4):57-60+107.
[16] 杨玖林, 杨春光.相变储能技术在冷藏车中的应用[J].交通节能与环保, 2018, 14(3):8-10.
YANG J L, YANG C G.Application of phase change energy storage in refrigerated trucks[J].Energy Conservation and Environmental Protection in Transportation, 2018, 14(3):8-10.
[17] 刘佳佳.相变蓄热器性能与强化传热研究[D].北京:华北电力大学, 2017.
LIU J J.Performance and heat transfer enhancement of a latent heat thermal energy storage system[D].Beijing:North China Electric Power University, 2017.
[18] MEHLING H.Heat and cold storage with PCM[M]//CABEZA L F.Heat and Mass Transfer.Berlin:Springer, 2018:137-179.
[19] KAMKARI B, SHOKOUHMAND H, BRUNO F.Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure[J].International Journal of Heat and Mass Transfer, 2014, 72:186-200.
[20] ESEN M, DURMU? A, DURMU? A.Geometric design of solar-aided latent heat store depending on various parameters and phase change materials[J].Solar Energy, 1998, 62(1):19-28.
[21] 张亮, 史忠科.被动式汽车相变材料储能器的实验分析[J].化工学报, 2018, 69(S1):176-181. ZHANG L, SHI Z K.Experimental exploration of passive energy storage device with phase change materials for vehicle[J].CIESC Journal, 2018, 69(S1):176-181.
[22] CUI Y Q.Investigation of phase change material passive cooling system for buildings[D].Nottingham:University of Nottingham, 2014.
[23] REGIN A F, SOLANKI S C, SAINI J S.Latent heat thermal energy storage using cylindrical capsule:numerical and experimental investigations[J].Renewable Energy, 2006, 31(13):2025-2041
[24] 陈亮, 刘道平, 杨亮.相变储能过程传热强化技术研究进展[J].化工进展, 2017, 36(S1):291-296.
CHEN L, LIU D P, YANG L.Progress of heat transfer enhancement technology in phase change energy storage process[J].Chemical Industry and Engineering Progress, 2017, 36(S1):291-296.
[25] 崔艳琦, 龚方方, 张燕妮, 等.相变材料(PCM)在建筑节能中的应用研究进展[J].新型建筑材料, 2016, 43(8):26-29.
CUI Y Q, GONG F F, ZHANG Y N, et al.Development of study on the applications of phase change material (PCM) for energy saving in building[J].New Building Materials, 2016, 43(8):26-29.
[26] 付学友.相变蓄热装置传热特性及优化研究[D].北京:北方工业大学, 2018. FU X Y.Research on heat transfer characteristics and optimization of phase change heat storage device[D].Beijing:North China University of Technology, 2018
[27] LI Z Y, FU X Y, PAN D, et al.Research on thermal storage perfor-mance of solar phase change thermal storage integrated device[J].Procedia Engineering, 2017, 205:1357-1363.
[28] 杨天润, 孙锲, WENNERSTEN R, 等.相变蓄冷材料的研究进展[J].工程热物理学报, 2018, 39(3):567-573. YANG T R, SUN Q, WENNERSTEN R, et al.Review of phase change materials for cold thermal energy storage[J].Journal of Engineering Thermophysics, 2018, 39(3):567-573.
[29] KHODADADI J M, HOSSEINIZADEH S F.Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage[J].International Communications in Heat and Mass Transfer, 2007, 34(5):534-543.
[30] EFTEKHAR J, HAJI-SHEIKH A, LOU D Y S.Heat transfer enhancement in a paraffin wax thermal storage system[J].Journal of Solar Energy Engineering, 1984, 106(3):299-306.
[31] WU S Y, ZHU D S, ZHANG, X R, et al.Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM)[J].Energy & Fuels, 2010, 24(3):1894-1898
[32] RANJBAR A A, KASHANI S, HOSSEINIZADEH S F, et al.Nu-merical heat transfer studies of a latent heat storage system containing nano-enhanced phase change material[J].Thermal Science, 2011, 15(1):169-181.
[33] HOSSEINIZADEH S F, DARZI A A R, TAN F L.Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container[J].Inter-national Journal of Thermal Sciences, 2012, 51:77-83
[34] EV-Volumes.Global plug-in vehicle sales for 2017-final results[EB/OL].[2018-4-1].http://www.ev-volumes.com/country/total-world-plug-in-vehicle-volumes/.
[35] Xevcar.2016 Research on China's new energy vehicle market[EB/OL].[2018-4-1].http://www.xevcar.com/hangye/012aci2016.html.
[36] WANG H T, HE F, MA L.Experimental and modeling study of controller-based thermal management of battery modules under dynamic loads[J].International Journal of Heat and Mass Transfer, 2016, 103:154-164.
[37] WANG T, TSENG K J, ZHAO J Y, et al.Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J].Applied Energy, 2014, 134:229-238.
[38] HE F, WANG H T, MA L.Experimental demonstration of active thermal control of a battery module consisting of multiple Li-ion cells[J].International Journal of Heat and Mass Transfer, 2015, 91:630-639.
[39] AL-HALLAJ S, SELMAN J R.A novel thermal management system for electric vehicle batteries using phase-change material[J].Journal of the Electrochemical Society, 2000, 147:3231-3236.
[40] DUAN X, NATERER G F.Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J], International Journal of Heat and Mass Transfer, 2010, 53(23/24):5176-5182.
[41] CHIBA R.A series solution for heat conduction problem with phase change in a finite slab[J].Abstract and Applied Analysis, 2014, 2014:684293.
[42] KIZILEL R, SABBAH R, SELMAN J R, et al.An alternative cooling system to enhance the safety of Li-ion battery packs[J].Journal of Power Sources, 2009, 194(2):1105-1112.
[43] QU Z G, LI W Q, WANG J L, et al.Passive thermal management using metal foam saturated with phase change material in a heat sink[J].International Communications in Heat and Mass Transfer, 2012, 39(10):1546-1549.
[44] QU Z G, LI W Q, TAO W Q.Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material[J].International Journal of Hydrogen Energy, 2014, 39(8):3904-3913.
[45] ZHAO R, ZHANG S J, GU J J, et al.An experimental study of lithium ion battery thermal management using flexible hydrogel films[J].Journal of Power Sources, 2014, 255:29-36.
[46] ZHANG S J, ZHAO R, LIU J, et al.Investigation on a hydrogel based passive thermal management system for lithium ion batteries[J].Energy, 2014, 68:854-861.
[47] SCHWEITZER B, WILKE S, KHATEEB S, et al.Experimental validation of a 0-D numerical model for phase change thermal mana-gement systems in lithium-ion batteries[J].Journal of Power Sources, 2015, 287:211-219.
[48] WU W X, YANG X Q, ZHANG G Q, et al.An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack[J].Energy, 2016, 113:909-916.
[49] LIN C J, XU S C, CHANG G F, et al.Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets[J].Journal of Power Sources, 2015, 275:742-749.
[50] WANG Z C, ZHANG Z Q, JIA L, et al.Paraffin and paraffin/aluminum foam composite phase change material heat storage experi-mental study based on thermal management of Li-ion battery[J].App-lied Thermal Engineering, 2015, 78:428-436.
[51] ALIPANAH M, LI X L.Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams[J].International Journal of Heat and Mass Transfer, 2016, 102:1159-1168.
[52] FATHABADI H.High thermal performance lithium-ion battery pack including hybrid active-passive thermal management system for using in hybrid/electric vehicles[J].Energy, 2014, 70:529-538.
[53] LING Z Y, WANG F X, FANG X M, et al.A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J].Applied Energy, 2015, 148:403-409.
[54] 刘扬娟.轿车空调压缩机的选型探讨[J].压缩机技术, 1990, (2):37-42.
LIU Y J.Discussion on selection of car air conditioning compressor[J].Compressor Technology, 1990, (2):37-42.
[55] SCHATZ O.Cold start improvement with a heat store:SAE technical paper 910305[R].1991.
[56] Webasto Group.Truck bunk cooling systems:bluecool[EB/OL].[2018-4-1].https://www.webasto.com/us/markets-products/heavy-duty-truck/bunk-cooling-systems/products/bluecool/.
[57] AllCell Technologies.Thermal energy storage[EB/OL].[2018-4-1].http://www.allcelltech.com/index.php/technology/thermal-energy-storage.
[58] KORIN E, RESHEF R, TSHERNICHOVESKY D, et al.Improving cold-start functioning of catalytic converters by using phase-change materials:SAE technical paper 980671[R].1998.
[59] TENG H, REGNER G, COWLAND C.Waste heat recovery of heavy-duty diesel engines by organic Rankine cycle (Ⅰ):Hybrid energy system of diesel and Rankine engines:SAE technical paper 2007-01-0537[R].2007.
[60] GUMUS M.Reducing cold-start emission from internal combustion engines by means of thermal energy storage system[J].Applied Thermal Engineering, 2009, 29(4):652-660.
[61] RINGLER J, SEIFERT M, GUYOTOT V, et al.Rankine cycle for waste heat recovery of IC engines[J].SAE Int.J.Engines, 2009, 2(1):67-76.
[62] 秦朝葵, 杨志.一种使用发动机余热的新型客车采暖系统[J].柴油机, 2004, (5):41-43.
QIN C K, YANG Z.A novel heating system for coach making use of waste heat[J].Diesel Engine, 2004, (5):41-43.
[63] 杨启容, 杨娟, 刘大维.回收发动机余热的球内对称凝固过程参数分析[J].农业机械学报, 2006, (3):27-30.
YANG Q R, YANG J, LIU D W.Parameter analysis of freezing in spheres for the recovering of waste heat of engine[J].Transactions of the Chinese Society for Agricultural Machinery, 2006, (3):27-30.
[64] 高青, 王永珍, 王国华, 等.基于车辆余热蓄能利用的作用特性分析[J].热科学与技术, 2008, 7(4):314-319.
GAO Q, WANG Y Z, WANG G H, et al.Characteristics of thermal energy storage on automobile waste heat for vehicle heating[J].Journal of Thermal Science and Technology, 2008, 7(4):314-319.
[65] 杨肖虎, 李杨, 张联英, 等.一种相变储能的电动公交车辐射空调系统:106143048A[P].2016-11-23.
YANG X H, LI Y, ZHANG L Y, et al.A radiant air conditioning system for electric buses based on energy storage via phase change:106143048A[P].2016-11-23.
[66] 郭燕雯, 黄婷婷, 张凡, 等.基于相变蓄热的回质型吸附制冷空调系统:103912946A[P].2014-07-09.
GUO Y W, HUANG T T, ZHANG F, et al.A regenerative adsorption air conditioning system based on phase change heat storage:103912946A[P].2014-07-09.
[67] 黄婷婷, 郭燕雯, 张志伟, 等.一种汽车余热驱动的固体吸附空调系统:103940143A[P].2014-07-23.
HUANG T T, GUO Y W, ZHANG Z W, et al.A solid adsorption air conditioning system driven by automobile waste heat:103940143A[P].2014-07-23.
[68] WANG F Q, MAIDMENT G, MISSENDEN J, et al.The novel use of phase change materials in refrigeration plant (2):Dynamic simulation model for the combined system[J].Applied Thermal Engineering, 2007, 27(17/18):2902-2910.
[69] APACI Pty Ltd.Application of PCM materials and products[EB/OL].[2018-4-1].http://www.apaci.com.au/applications.aspx.
[70] Sofrigam.Gel packs used to maintain cold temperatures[EB/OL].[2018-4-1].http://www.sofrigam.com/snowgam-gel-packs.
[71] TAN H B, LI Y Z, TUO H F, et al.Experimental study on liquid/solid phase change for cold energy storage of liquefied natural gas (LNG) refrigerated vehicle[J].Energy, 2010, 35(5):1927-1935.

[1] 于樱迎, 唐瑾晨, 胡学功. 电场作用下矩形微槽群润湿特性数值分析[J]. 化工学报, 2018, 69(10): 4216-4223.
[2] 葛铭, 赵利杰, 戴维葆, 蔡培, 舒少辛, 杨海瑞, 吕俊复. 叉排三维外肋管的传热特性[J]. 化工学报, 2017, 68(10): 3733-3738.
[3] 潘阳敏, 罗祎青, 王丽雯, 袁希钢. 压力旋流式喷嘴喷淋液膜区换热过程的数值模拟[J]. 化工学报, 2017, 68(2): 575-583.
[4] 魏庆, 姚秀颖, 张永民. 竖直管气固鼓泡流化床传热机理的CPFD模拟[J]. 化工学报, 2016, 67(5): 1732-1740.
[5] 王翠华, 赵保增, 龚斌, 寇丽萍, 吴剑华. 黏度随温度变化对三角形螺旋夹套内湍流流体流动及换热的影响[J]. 化工学报, 2015, 66(12): 4758-4766.
[6] 仵斯, 李廷贤, 闫霆, 代彦军, 王如竹. 高性能定形复合相变储能材料的制备及热性能[J]. 化工学报, 2015, 66(12): 5127-5134.
[7] 徐彬, 石玉美. 竖直微肋管内LNG流动沸腾传热特性的分析[J]. 化工学报, 2015, 66(S2): 66-75.
[8] 刘应书, 贾彦翔, 孙淑凤, 宋魏鑫. 密闭空间内模块式冰蓄冷控温传热过程分析[J]. 化工学报, 2014, 65(6): 2085-2091.
[9] 邱勇军, 朱恂, 王宏, 廖强. 熔渣颗粒空冷相变换热的三维数值模拟[J]. 化工学报, 2014, 65(S1): 340-345.
[10] 陈东升, 石玉美. 0.5 MPa下液化天然气在竖直圆管中饱和流动沸腾传热[J]. 化工学报, 2014, 65(4): 1199-1207.
[11] 胡小冬, 高学农, 李得伦, 陈思婷. 石蜡/膨胀石墨定形相变材料的性能[J]. 化工学报, 2013, 64(10): 3831-3837.
[12] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130-135.
[13] 张利斌,李修伦,张金钟,林瑞泰. 三相循环流化床中沸腾传热特性 [J]. , 1999, 50(2): 208-215.
[14] 朱冬生,汪立军,谭盈科. 化学聚合法强化吸附剂热传导 [J]. , 1999, 50(2): 235-241.
[15] 王金亮. 毛细管内蒸发传热机理的分析 [J]. , 1999, 50(4): 435-442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!