化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1272-1281.doi: 10.11949/j.issn.0438-1157.20181235

• 流体力学与传递现象 • 上一篇    下一篇

矩形截面弯曲型微通道气液两相Taylor流压降的研究

梁倩卿1,2(),马学虎1(),王凯1,春江1,郝婷婷1,兰忠1,王亚雄2   

  1. 1. 大连理工大学辽宁省化工资源清洁利用重点实验室,辽宁 大连116024
    2. 内蒙古科技大学化学与化工学院,内蒙古 包头 014010
  • 收稿日期:2018-10-19 修回日期:2019-01-07 出版日期:2019-04-05 发布日期:2019-01-07
  • 通讯作者: 马学虎 E-mail:liangqianqing119@hotmail.com;xuehuma@dlut.edu.cn
  • 作者简介:<named-content content-type="corresp-name">梁倩卿</named-content>(1985—),女,博士,讲师,<email>liangqianqing119@hotmail.com</email>|马学虎(1965—),男,博士,教授,<email>xuehuma@dlut.edu.cn</email>
  • 基金资助:
    国家自然科学基金项目(21476037, 21606034)

Gas-liquid Taylor flow pressure drop in rectangular meandering microchannel

Qianqing LIANG1,2(),Xuehu MA1(),Kai WANG1,Jiang CHUN1,Tingting HAO1,Zhong LAN1,Yaxiong WANG2   

  1. 1. Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Dalian University of Technology, Dalian 116024, Liaoning, China
    2. School of Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, China
  • Received:2018-10-19 Revised:2019-01-07 Online:2019-04-05 Published:2019-01-07
  • Contact: Xuehu MA E-mail:liangqianqing119@hotmail.com;xuehuma@dlut.edu.cn

摘要:

主要测定了低分压CO2(混合气相组成为5%CO2和95%N2,简写为CO2/N2)在矩形截面多弯头微通道中气-液两相Taylor流的流动压降。通过对比六个气液相体系,发现液相的物理性质对气液两相Taylor流压降的影响显著不同。表面张力变化组(CO2/N2-水、CO2/N2 -2%正丙醇水溶液和CO2/N2 -5%正丙醇水溶液)的气液两相Taylor流压降随液相流速的增大呈现线性增长趋势;黏度变化组(CO2/N2-甲醇、CO2/N2-乙醇和CO2/N2-正丙醇)的气液两相Taylor流压降随着 j L 2 / 3 变化而呈现规律性增大。重点考虑了弯曲通道二次流和液弹内循环的贡献,同时分析考虑了气泡的形状及其运动、通道特征参数和液相的物理性质,提出了新的气液两相Taylor流压降的表观摩擦系数模型,在±20%误差范围内获得了良好的预测效果。

关键词: 两相流, 矩形截面, 微通道, 压降, 模型

Abstract:

The pressure drop of gas-liquid two-phase Taylor flow in a rectangular meandering microchannel at low CO2 pressure (CO2,5% (vol), N2,95%(vol)) was measured. By comparing the six gas-liquid phase systems, it is found that the physical properties of the liquid phase have a significant effect on the pressure drop of the gas-liquid two-phase Taylor flow. The pressure drop of two-phase flow showed a linear increasing trend with the increasing liquid velocity for surface tension variation group, while for the viscosity variation group, the pressure drop of two-phase flow had a poor linearity with liquid phase velocity, and the pressure drop of two-phase flow increases regularly with j L 2 / 3 . The comparison between the predicted results from the literatures models and measured data was also made. Considering the effects of the liquid internal circulation, bubble shape and motion, channel characteristic configuration (channel cross section and overall configuration) and physical chemistry of the liquid phase, a two-phase flow pressure drop model was proposed, and a mean deviation ±20% can be obtained.

Key words: two-phase flow, rectangular section, microchannels, pressure drop, model

中图分类号: 

  • TQ 021.4

表1

本实验涉及液相体系的物理性质[36] "

Liquid phase

Density,

ρ/(kg·m-3)

Viscosity,

μ/(mPa· s)

Surface tension,

σ/(mN·m-1)

deionized water 997 0.890 72.2

2% (mole fraction) propanol

aqueous solution (2% NPA)

987.2

1.154

41.8

5% (mole fraction) propanol

aqueous solution (5% NPA)

975.6

1.574

30.5

methanol(MT) 786 0.546 22.2
ethanol(EA) 785 1.099 22.7
propanol(NPA) 800 1.942 23.4

图1

T型入口多弯头微通道的构型"

图2

微通道吸收CO2流动与传质系统流程"

图3

表面张力变化组Taylor流压降随液相流速的变化"

图4

黏度变化组Taylor流压降随液相流速的变化"

图5

黏度变化组微通道两相Taylor流压降随 j L 2 / 3 的变化规律"

图6

不同气液相体系中Kreutzer等[24]提出的模型中参数a与Re TP 的关系"

图7

表面张力变化的气液相体系实验得到的表观摩擦系数与文献的比较"

图8

黏度变化的气液相体系实验得到的表观摩擦系数与文献的比较"

图9

弯曲型矩形微通道中不同气液相体系中f app Re TP的实验值与预测值的比较"

1 Ganapathy H , Al-hajri E , Ohadi M . Mass transfer characteristics of gas-liquid absorption during Taylor flow in mini/microchannel reactors[J]. Chem. Eng. Sci., 2013, 101: 69-80.
2 Dutcher B , Fan M , Russell A G . Amine - based CO2 capture technology development from the beginning of 2013—a review [J]. ACS Appl. Mater. Interfaces, 2015, 7(4): 2137-2148.
3 马学虎, 兰忠, 王凯, 等 . 舞动的液滴:界面现象与过程调控[J]. 化工学报, 2018, 69(1): 9-43.
Ma X H , Lan Z , Wang K , et al . Dancing droplet: interface phenomena and progress regulation[J]. CIESC Journal, 2018, 69(1): 9-43.
4 陈光文, 袁权 . 微化工技术[J]. 化工学报, 2003, 54(4): 427-439.
Chen G W , Yuan Q . Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439.
5 袁权, 陈光文, 赵玉潮 . 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1): 63-75.
Yuan Q , Chen G W , Zhao Y C . Transport phenomena in micro-chemical engineering[J]. CIESC Journal, 2013, 64(1): 63-75.
6 尧超群, 乐军, 赵玉潮,等 . 微通道内气-液状流动及传质特性研究进展[J]. 化工学报, 2015, 66 (8): 2759-2766.
Yao C Q , Yue J , Zhao Y C , et al . Review on flow and mass transfer characteristics of gas-liquid slug flow in microchannels[J].CIESC Journal, 2015,66(8): 2759-2766
7 Guzowski J , Garstecki P . Droplet clusters: exploring the phase space of soft mesoscale atoms[J]. Phys. Rev. Lett.,2015, 114(18): 188302.
8 Costantini M , Colosi C , Jaroszewicz J , et al . Microfluidic foaming: a powerful tool for tailoring the morphological and permeability properties of sponge-like biopolymeric scaffolds[J]. ACS Appl. Mat. Interfaces, 2015, 7(42): 23660-23671.
9 Li W , Liu K , Simms R , et al . Microfluidic study of fast gas-liquid reactions[J]. J. Am. Chem. Soc., 2012, 134(6): 3127-3132.
10 Hao T T , Ma X H , Lan Z , et al . Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe[J]. Int. J. Heat Mass Transfer, 2014, 72: 50-65.
11 Hao T T , Ma X H , Lan Z , et al . Effects of superhydrophobic and superhydrophilic surfaces on heat transfer and oscillating motion of an oscillating heat pipe[J]. J. Heat Transfer, 2014, 136(8):082001.
12 Liang Q Q , Hao T T , Wang K , et al . Startup and transport characteristics of oscillating heat pipe using ionic liquids[J]. Int. Commun. Heat Mass, 2018, 94: 1-13.
13 Tumarkin E , Nie Z , Park J I , et al . Temperature- controlled “breathing” of carbon dioxide bubbles[J]. Lab Chip, 2011, 11(20): 3545-3450.
14 Lefortier S G , Hamersma P J , Bardow A , et al . Rapid microfluidic screening of CO2 solubility and diffusion in pure and mixed solvents[J]. Lab Chip, 2012, 12(18): 3387-3391.
15 梁倩卿, 春江, 王凯, 等 . 弯曲型微通道吸收CO2/N2 混合气的传质性能[J]. 高校化学工程学报, 2017, 31(4): 784-793.
Liang Q Q , Chun J , Wang K , et al . Mass transfer characteristics during CO2 /N2 mixture absorption in a meandering-microchannel[J]. J. Chem. Eng. Chin. Univ., 2017, 31(4): 784-793.
16 马学虎, 梁倩卿, 王凯, 等 . 基于微吸收器的CO2吸收过程研究进展[J]. 化工进展, 2018, 37(4): 1229-1246.
Ma X H , Liang Q Q , Wang K , et al . Progress of CO2 absorption process in micro-absorbers[J].Chem. Ind. Eng. Prog., 2018, 37(4): 1229-1246.
17 Yao C Q , Zhao Y C , Dang M H , et al . Characteristics of slug flow with inertial effects in a rectangular microchannel[J]. Chem. Eng. Sci., 2013, 95: 246-256.
18 van Steijn V , Kreutzer M T , Kleijn C R . μ-PIV study of the formation of segmented flow in microfluidic T-junctions[J]. Chem. Eng. Sci., 2007, 62(24): 7505-7514.
19 Kuhn S , Jensen K F . A pH-sensitive laser-induced fluorescence technique to monitor mass transfer in multiphase flows in microfluidic devices[J]. Ind. Eng. Chem. Res., 2012, 51(26): 8999-9006.
20 Tan J , Lu Y C , Xu J H , et al . Mass transfer performance of gas-liquid segmented flow in microchannels[J]. Chem. Eng. J., 2012, 181/182: 229-235.
21 Zaloha P , Kristal J , Jiricny V , et al . Characteristics of liquid slugs in gas- liquid Taylor flow in microchannels[J]. Chem. Eng. Sci., 2012, 68(1): 640-649.
22 Fries D M , von Rohr P R . Liquid mixing in gas-liquid two-phase flow by meandering microchannels[J].Chem. Eng. Sci., 2009, 64(6): 1326-1335.
23 Fries D , Waelchli S , Rudolfvonrohr P . Gas-liquid two-phase flow in meandering microchannels[J]. Chem. Eng. J., 2008, 135: S37-S45
24 Günther A , Khan S A , Thalmann M , et al . Transport and reaction in microscale segmented gas-liquid flow[J]. Lab Chip, 2004, 4(4): 278-286.
25 Günther A , Jhunjhunwala M , Thalmann M . Micromixing of miscible liquids in segmented gas-liquid flow[J]. Langmuir, 2005, 21: 1547-1555.
26 Mac Giolla Eain M , Egan V , Howard J , et al . Review and extension of pressure drop models applied to Taylor flow regimes[J]. Int. J. Multiphase Flow, 2015, 68: 1-9.
27 Triplett K A , Ghiaasiaan S M , Abdel-Khalik S I , et al . Gas-liquid two-phase flow in microchannels (Ⅱ): Void fraction and pressure drop [J]. Int. J. Multiphase Flow, 1999, 25(3): 395-410.
28 Lockhart R W , Martinelli R C . Proposed correlation of data for isothermal two- phase, two- component flow in pipes [J]. Chem. Eng. Prog., 1949, 45(1): 39-48.
29 Ratulowski J , Chang H C . Transport of gas bubbles in capillaries[J]. Phys. Fluid A: Fluid Dynamics, 1989, 1(10): 1642-1655.
30 Bretherton F P . The motion of long bubbles in tubes[J]. J. Fluid Mech., 1961, 10: 166-188.
31 Kreutzer M T , Kapteijn F , Moulijn J A . Inertial and interfacial effects on pressure drop of Taylor flow in capillaries[J]. AIChE J., 2005, 51(9): 2428-2440.
32 Walsh E , Muzychka Y , Walsh P , et al . Pressure drop in two phase slug/bubble flows in mini scale capillaries[J]. Int. J. Multiphase Flow, 2009, 35(10): 879-884.
33 Warnier M J F , de Croon M H J M , Rebrov E V , et al . Pressure drop of gas-liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers[J]. Microfluid Nanofluid, 2009, 8(1): 33-45.
34 Yue J , Luo L G , Gonthier Y , et al . An experimental study of air-water Taylor flow and mass transfer inside square microchannels[J]. Chem. Eng. Sci., 2009, 64(16): 3697-3708.
35 Garstecki P , Fuerstman M J , Whitesides G M . Oscillations with uniquely long periods in a microfluidic bubble generator[J]. Nature. Phys., 2005,1:168-171.
36 Won Y S , Chung D K , Mills A F . Density, viscosity, surface tension, and carbon dioxide solubility and diffusivity of methanol, ethanol, aqueous propanol, and aqueous ethylene glycol at 25℃ [J]. J. Chem. Eng. Data, 1981, 26: 140-141.
37 Chalfi T Y , Ghiaasiaan S M . Pressure drop caused by flow area changes in capillaries under low flow conditions [J]. Int. J. Multiphase Flow, 2008, 34(1):2-12.
38 Carey V P . Liquid-vapor Phase-change Phenomena [M]. New York : Hemisphere, 1992:521-550.
39 Kreutzer M T , Kapteijn F , Moulijn J A , et al . Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels[J]. Chem. Eng. Sci., 2005, 60(22): 5895-5916.
40 Berthier J , Silberzan P . Microfluidics for Biotechnology [M]. Boston, London: Artech House, 2010:42-44.
41 Abiev R S . Bubbles velocity, Taylor circulation rate and mass transfer model for slug flow in milli- and microchannels[J]. Chem. Eng. J., 2013, 227: 66-79.
42 Kuo J S , Chiu D T . Controlling mass transport in microfluidic devices[J]. Annu. Rev. Anal. Chem., 2011, 4: 275-296.
43 Waelchli S , von Rohr P R . Two-phase flow characteristics in gas-liquid microreactors[J]. Int. J. Multiphase Flow, 2006, 32(7): 791-806.
[1] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[2] 张丽, 由钢, 乔霄峰, 许光文, 刘国桢, 刘云义. 氯碱电解槽内压力波动的混沌分析及流型识别[J]. 化工学报, 2019, 70(S1): 35-44.
[3] 张雷刚, 许波, 施娟, 陈振乾. 微重力条件下FC-72在针肋表面冷凝传热的实验研究[J]. 化工学报, 2019, 70(S1): 45-53.
[4] 林俊杰, 罗坤, 王帅, 胡陈枢, 樊建人. coarse-grained CFD-DEM方法在不同流态流化床中的模拟验证[J]. 化工学报, 2019, 70(5): 1702-1712.
[5] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[6] 吴君强, 蒋文明, 杜仕林, 刘杨. 水平管路水环输送稠油减阻模拟实验[J]. 化工学报, 2019, 70(5): 1734-1741.
[7] 李兵, 杨义, 刘作华, 陶长元, 谷德银, 许传林, 王运东. 湿法磷酸固-液体系混沌混合与浸出强化行为[J]. 化工学报, 2019, 70(5): 1742-1749.
[8] 汪勤, 张冰剑, 何畅, 陈清林. 基于能量目标的芳烃萃取精馏溶剂评价模型[J]. 化工学报, 2019, 70(5): 1815-1822.
[9] 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831.
[10] 杜文欣, 伍联营, 张伟涛, 陈灿, 胡仰栋. 钢球在液体中振动磨损量的研究[J]. 化工学报, 2019, 70(4): 1505-1511.
[11] 杨世品, 黄振, 李丽娟, 宋健全, 叶景, 汪辉. 复杂化工过程失配子模型深度诊断与修正算法[J]. 化工学报, 2019, 70(4): 1485-1493.
[12] 程洁, 郭亚军, 王腾, 桂淼, 刘朝辉, 随志强. γ射线法测量高压管束间气液两相流的截面含气率分布[J]. 化工学报, 2019, 70(4): 1375-1382.
[13] 梁文胜, 刘江涛, 赵月, 黄伟, 左志军. NiO和Ni催化剂对苯甲酸热解机理的理论计算[J]. 化工学报, 2019, 70(4): 1429-1435.
[14] 沈伟伟, 邓道明, 刘乔平, 宫敬. 基于环雾流理论的气井临界流速预测模型[J]. 化工学报, 2019, 70(4): 1318-1330.
[15] 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .