化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1272-1281.doi: 10.11949/j.issn.0438-1157.20181235
梁倩卿1,2(),马学虎1(
),王凯1,春江1,郝婷婷1,兰忠1,王亚雄2
Qianqing LIANG1,2(),Xuehu MA1(
),Kai WANG1,Jiang CHUN1,Tingting HAO1,Zhong LAN1,Yaxiong WANG2
摘要:
主要测定了低分压CO2(混合气相组成为5%CO2和95%N2,简写为CO2/N2)在矩形截面多弯头微通道中气-液两相Taylor流的流动压降。通过对比六个气液相体系,发现液相的物理性质对气液两相Taylor流压降的影响显著不同。表面张力变化组(CO2/N2-水、CO2/N2 -2%正丙醇水溶液和CO2/N2 -5%正丙醇水溶液)的气液两相Taylor流压降随液相流速的增大呈现线性增长趋势;黏度变化组(CO2/N2-甲醇、CO2/N2-乙醇和CO2/N2-正丙醇)的气液两相Taylor流压降随着
中图分类号:
1 | Ganapathy H , Al-hajri E , Ohadi M . Mass transfer characteristics of gas-liquid absorption during Taylor flow in mini/microchannel reactors[J]. Chem. Eng. Sci., 2013, 101: 69-80. |
2 | Dutcher B , Fan M , Russell A G . Amine - based CO2 capture technology development from the beginning of 2013—a review [J]. ACS Appl. Mater. Interfaces, 2015, 7(4): 2137-2148. |
3 | 马学虎, 兰忠, 王凯, 等 . 舞动的液滴:界面现象与过程调控[J]. 化工学报, 2018, 69(1): 9-43. |
Ma X H , Lan Z , Wang K , et al . Dancing droplet: interface phenomena and progress regulation[J]. CIESC Journal, 2018, 69(1): 9-43. | |
4 | 陈光文, 袁权 . 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
Chen G W , Yuan Q . Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439. | |
5 | 袁权, 陈光文, 赵玉潮 . 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1): 63-75. |
Yuan Q , Chen G W , Zhao Y C . Transport phenomena in micro-chemical engineering[J]. CIESC Journal, 2013, 64(1): 63-75. | |
6 | 尧超群, 乐军, 赵玉潮,等 . 微通道内气-液状流动及传质特性研究进展[J]. 化工学报, 2015, 66 (8): 2759-2766. |
Yao C Q , Yue J , Zhao Y C , et al . Review on flow and mass transfer characteristics of gas-liquid slug flow in microchannels[J].CIESC Journal, 2015,66(8): 2759-2766 | |
7 | Guzowski J , Garstecki P . Droplet clusters: exploring the phase space of soft mesoscale atoms[J]. Phys. Rev. Lett.,2015, 114(18): 188302. |
8 | Costantini M , Colosi C , Jaroszewicz J , et al . Microfluidic foaming: a powerful tool for tailoring the morphological and permeability properties of sponge-like biopolymeric scaffolds[J]. ACS Appl. Mat. Interfaces, 2015, 7(42): 23660-23671. |
9 | Li W , Liu K , Simms R , et al . Microfluidic study of fast gas-liquid reactions[J]. J. Am. Chem. Soc., 2012, 134(6): 3127-3132. |
10 | Hao T T , Ma X H , Lan Z , et al . Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe[J]. Int. J. Heat Mass Transfer, 2014, 72: 50-65. |
11 | Hao T T , Ma X H , Lan Z , et al . Effects of superhydrophobic and superhydrophilic surfaces on heat transfer and oscillating motion of an oscillating heat pipe[J]. J. Heat Transfer, 2014, 136(8):082001. |
12 | Liang Q Q , Hao T T , Wang K , et al . Startup and transport characteristics of oscillating heat pipe using ionic liquids[J]. Int. Commun. Heat Mass, 2018, 94: 1-13. |
13 | Tumarkin E , Nie Z , Park J I , et al . Temperature- controlled “breathing” of carbon dioxide bubbles[J]. Lab Chip, 2011, 11(20): 3545-3450. |
14 | Lefortier S G , Hamersma P J , Bardow A , et al . Rapid microfluidic screening of CO2 solubility and diffusion in pure and mixed solvents[J]. Lab Chip, 2012, 12(18): 3387-3391. |
15 | 梁倩卿, 春江, 王凯, 等 . 弯曲型微通道吸收CO2/N2 混合气的传质性能[J]. 高校化学工程学报, 2017, 31(4): 784-793. |
Liang Q Q , Chun J , Wang K , et al . Mass transfer characteristics during CO2 /N2 mixture absorption in a meandering-microchannel[J]. J. Chem. Eng. Chin. Univ., 2017, 31(4): 784-793. | |
16 | 马学虎, 梁倩卿, 王凯, 等 . 基于微吸收器的CO2吸收过程研究进展[J]. 化工进展, 2018, 37(4): 1229-1246. |
Ma X H , Liang Q Q , Wang K , et al . Progress of CO2 absorption process in micro-absorbers[J].Chem. Ind. Eng. Prog., 2018, 37(4): 1229-1246. | |
17 | Yao C Q , Zhao Y C , Dang M H , et al . Characteristics of slug flow with inertial effects in a rectangular microchannel[J]. Chem. Eng. Sci., 2013, 95: 246-256. |
18 | van Steijn V , Kreutzer M T , Kleijn C R . μ-PIV study of the formation of segmented flow in microfluidic T-junctions[J]. Chem. Eng. Sci., 2007, 62(24): 7505-7514. |
19 | Kuhn S , Jensen K F . A pH-sensitive laser-induced fluorescence technique to monitor mass transfer in multiphase flows in microfluidic devices[J]. Ind. Eng. Chem. Res., 2012, 51(26): 8999-9006. |
20 | Tan J , Lu Y C , Xu J H , et al . Mass transfer performance of gas-liquid segmented flow in microchannels[J]. Chem. Eng. J., 2012, 181/182: 229-235. |
21 | Zaloha P , Kristal J , Jiricny V , et al . Characteristics of liquid slugs in gas- liquid Taylor flow in microchannels[J]. Chem. Eng. Sci., 2012, 68(1): 640-649. |
22 | Fries D M , von Rohr P R . Liquid mixing in gas-liquid two-phase flow by meandering microchannels[J].Chem. Eng. Sci., 2009, 64(6): 1326-1335. |
23 | Fries D , Waelchli S , Rudolfvonrohr P . Gas-liquid two-phase flow in meandering microchannels[J]. Chem. Eng. J., 2008, 135: S37-S45 |
24 | Günther A , Khan S A , Thalmann M , et al . Transport and reaction in microscale segmented gas-liquid flow[J]. Lab Chip, 2004, 4(4): 278-286. |
25 | Günther A , Jhunjhunwala M , Thalmann M . Micromixing of miscible liquids in segmented gas-liquid flow[J]. Langmuir, 2005, 21: 1547-1555. |
26 | Mac Giolla Eain M , Egan V , Howard J , et al . Review and extension of pressure drop models applied to Taylor flow regimes[J]. Int. J. Multiphase Flow, 2015, 68: 1-9. |
27 | Triplett K A , Ghiaasiaan S M , Abdel-Khalik S I , et al . Gas-liquid two-phase flow in microchannels (Ⅱ): Void fraction and pressure drop [J]. Int. J. Multiphase Flow, 1999, 25(3): 395-410. |
28 | Lockhart R W , Martinelli R C . Proposed correlation of data for isothermal two- phase, two- component flow in pipes [J]. Chem. Eng. Prog., 1949, 45(1): 39-48. |
29 | Ratulowski J , Chang H C . Transport of gas bubbles in capillaries[J]. Phys. Fluid A: Fluid Dynamics, 1989, 1(10): 1642-1655. |
30 | Bretherton F P . The motion of long bubbles in tubes[J]. J. Fluid Mech., 1961, 10: 166-188. |
31 | Kreutzer M T , Kapteijn F , Moulijn J A . Inertial and interfacial effects on pressure drop of Taylor flow in capillaries[J]. AIChE J., 2005, 51(9): 2428-2440. |
32 | Walsh E , Muzychka Y , Walsh P , et al . Pressure drop in two phase slug/bubble flows in mini scale capillaries[J]. Int. J. Multiphase Flow, 2009, 35(10): 879-884. |
33 | Warnier M J F , de Croon M H J M , Rebrov E V , et al . Pressure drop of gas-liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers[J]. Microfluid Nanofluid, 2009, 8(1): 33-45. |
34 | Yue J , Luo L G , Gonthier Y , et al . An experimental study of air-water Taylor flow and mass transfer inside square microchannels[J]. Chem. Eng. Sci., 2009, 64(16): 3697-3708. |
35 | Garstecki P , Fuerstman M J , Whitesides G M . Oscillations with uniquely long periods in a microfluidic bubble generator[J]. Nature. Phys., 2005,1:168-171. |
36 | Won Y S , Chung D K , Mills A F . Density, viscosity, surface tension, and carbon dioxide solubility and diffusivity of methanol, ethanol, aqueous propanol, and aqueous ethylene glycol at 25℃ [J]. J. Chem. Eng. Data, 1981, 26: 140-141. |
37 | Chalfi T Y , Ghiaasiaan S M . Pressure drop caused by flow area changes in capillaries under low flow conditions [J]. Int. J. Multiphase Flow, 2008, 34(1):2-12. |
38 | Carey V P . Liquid-vapor Phase-change Phenomena [M]. New York : Hemisphere, 1992:521-550. |
39 | Kreutzer M T , Kapteijn F , Moulijn J A , et al . Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels[J]. Chem. Eng. Sci., 2005, 60(22): 5895-5916. |
40 | Berthier J , Silberzan P . Microfluidics for Biotechnology [M]. Boston, London: Artech House, 2010:42-44. |
41 | Abiev R S . Bubbles velocity, Taylor circulation rate and mass transfer model for slug flow in milli- and microchannels[J]. Chem. Eng. J., 2013, 227: 66-79. |
42 | Kuo J S , Chiu D T . Controlling mass transport in microfluidic devices[J]. Annu. Rev. Anal. Chem., 2011, 4: 275-296. |
43 | Waelchli S , von Rohr P R . Two-phase flow characteristics in gas-liquid microreactors[J]. Int. J. Multiphase Flow, 2006, 32(7): 791-806. |
[1] | 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27. |
[2] | 张丽, 由钢, 乔霄峰, 许光文, 刘国桢, 刘云义. 氯碱电解槽内压力波动的混沌分析及流型识别[J]. 化工学报, 2019, 70(S1): 35-44. |
[3] | 张雷刚, 许波, 施娟, 陈振乾. 微重力条件下FC-72在针肋表面冷凝传热的实验研究[J]. 化工学报, 2019, 70(S1): 45-53. |
[4] | 林俊杰, 罗坤, 王帅, 胡陈枢, 樊建人. coarse-grained CFD-DEM方法在不同流态流化床中的模拟验证[J]. 化工学报, 2019, 70(5): 1702-1712. |
[5] | 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722. |
[6] | 吴君强, 蒋文明, 杜仕林, 刘杨. 水平管路水环输送稠油减阻模拟实验[J]. 化工学报, 2019, 70(5): 1734-1741. |
[7] | 李兵, 杨义, 刘作华, 陶长元, 谷德银, 许传林, 王运东. 湿法磷酸固-液体系混沌混合与浸出强化行为[J]. 化工学报, 2019, 70(5): 1742-1749. |
[8] | 汪勤, 张冰剑, 何畅, 陈清林. 基于能量目标的芳烃萃取精馏溶剂评价模型[J]. 化工学报, 2019, 70(5): 1815-1822. |
[9] | 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831. |
[10] | 杜文欣, 伍联营, 张伟涛, 陈灿, 胡仰栋. 钢球在液体中振动磨损量的研究[J]. 化工学报, 2019, 70(4): 1505-1511. |
[11] | 杨世品, 黄振, 李丽娟, 宋健全, 叶景, 汪辉. 复杂化工过程失配子模型深度诊断与修正算法[J]. 化工学报, 2019, 70(4): 1485-1493. |
[12] | 程洁, 郭亚军, 王腾, 桂淼, 刘朝辉, 随志强. γ射线法测量高压管束间气液两相流的截面含气率分布[J]. 化工学报, 2019, 70(4): 1375-1382. |
[13] | 梁文胜, 刘江涛, 赵月, 黄伟, 左志军. NiO和Ni催化剂对苯甲酸热解机理的理论计算[J]. 化工学报, 2019, 70(4): 1429-1435. |
[14] | 沈伟伟, 邓道明, 刘乔平, 宫敬. 基于环雾流理论的气井临界流速预测模型[J]. 化工学报, 2019, 70(4): 1318-1330. |
[15] | 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531. |