化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 99-109.doi: 10.11949/j.issn.0438-1157.20181224

• 催化、动力学与反应器 • 上一篇    下一篇

K2CO3对兰炭催化气化特性的影响

孟繁锐1(),李伯阳1,李先春1,2(),邱爽2   

  1. 1. 辽宁科技大学先进煤焦化及煤资源的高效利用工程技术中心,辽宁 鞍山114051
    2. 辽宁科技大学化工学院,辽宁 鞍山 114051
  • 收稿日期:2018-10-18 修回日期:2018-11-23 出版日期:2019-03-31 发布日期:2019-04-26
  • 通讯作者: 李先春 E-mail:mengfanrui1025@163.com;askd1972@163.com
  • 作者简介:<named-content content-type="corresp-name">孟繁锐</named-content>(1987—),女,博士,讲师,<email>mengfanrui1025@163.com</email>|李先春(1972—),男,博士,教授,<email>askd1972@163.com</email>
  • 基金资助:
    中国辽宁攀登学者开放基金项目(USTLKFZD201633);辽宁省自然科学基金项目(201602397)

Catalysis effects of K2CO3 for gasification of semi-coke

Fanrui MENG1(),Boyang LI1,Xianchun LI1,2(),Shuang QIU2   

  1. 1. Engineering Research Center of Advanced Coal & Coking Technology and Efficient Utilization of Coal Resources, the Education Department of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
    2. School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
  • Received:2018-10-18 Revised:2018-11-23 Online:2019-03-31 Published:2019-04-26
  • Contact: Xianchun LI E-mail:mengfanrui1025@163.com;askd1972@163.com

摘要:

在固定床中考察了不同K2CO3植入浓度和不同温度条件下兰炭催化气化特性。结果表明,5%的催化剂植入浓度主要起到填充孔隙的作用,当植入浓度增加到10%以后,催化剂发生堆积会使颗粒表面及内部形成较多孔隙。提高气化温度可提高兰炭转化率,超过750℃之后碳转化率增幅减缓,催化剂饱和装载浓度为10%。在颗粒表面和开放孔隙中的高浓度C(O)才具有较高的脱附速率,并提高CO生成速率。在非催化条件下,随着气化的进行CO/CO2下降,而H2/(2CO2+CO)先增后减。在催化条件下,H2/(2CO2+CO)稳定在1.5~1.7。催化剂兰炭样品中出现了K2Ca(CO3)2双金属碳酸盐、K2O、KO2等活性组分,并随催化剂植入浓度的增加而增加。催化剂植入浓度的增加会导致失活现象加重,但兰炭在750℃条件下气化1 h 催化剂没有完全失活。

关键词: 固定床, 催化剂, 兰炭, 制氢, 气化

Abstract:

Steam gasification of potassium-loaded semi-coke has been carried out with a fixed-bed laboratory gasifier at atmospheric pressure. With the K2CO3 loading increased the micropore area decreased. At a loading of 5% (mass), the K2CO3 mainly plays the role of filling pores. Above the loading of 10% (mass), the accumulation of catalyst will lead to more pores on the surface and interior of the particles. Increasing the gasification temperature could increase the carbon conversion rate, but above 750℃ the carbon conversion rate increased indistinctively. The loading values above which the effect was negligible were 10% (mass). High concentration of C(O) on the surface of particles and in open pores has a higher desorption rate and led to the generation rate of CO increase. Under non-catalytic conditions, CO/CO2 decreased as gasification time increasing, while H2/(2CO2+CO) increased first and then decreased. Under catalytic conditions, H2/(2CO2+CO) was stable at 1.5-1.7. The active components, such as K2Ca(CO3)2, K2O, and KO2, appeared in the catalyst semi-coke samples and increased with the catalyst loading increasing. Catalyst deactivation phenomenon was aggravated due to the loading increasing, but it was not completely inactivation under the condition of gasification 1 h at 750℃.

Key words: fixed-bed, catalyst, semi-coke, hydrogen production, gasification

中图分类号: 

  • TQ 536.1

表1

兰炭工业分析与元素分析"

SampleProximate analysis/%Ultimate analysis /%
MadVadAadFCadCdHdNdSd
semi-coke3.6418.665.6372.0779.781.440.850.11

图1

兰炭催化气化实验装置"

图2

兰炭颗粒表观形貌SEM照片"

表2

不同装载浓度K2CO3/兰炭以及气化后残焦的比表面积和孔容分布"

Sample, K2CO3/%Surface area /(m2/g)Micropore area /(m2/g)External surface area /(m2/g)Pore volume/(ml/g)
017.765.7112.050.004
51.5701.570.002
102.510.132.380.002
155.951.554.400.002
0-ash598.13398.44199.700.148
5-ash338.97269.8969.080.035
10-ash189.57163.3926.180.009
15-ash52.6043.109.500.004

图3

不同气化温度条件下主要气体产率分布"

图4

不同催化剂装载浓度条件下气化中气体产率分布"

表3

不同装载浓度K2CO3/兰炭气化中CO/CO2和H2/(2CO2+CO)值的变化"

Sample,

K2CO3/%

10 min20 min30 min40 min50 min
CO/CO2H2/(2CO2+CO)CO/CO2H2/(2CO2+CO)CO/CO2H2/(2CO2+CO)CO/CO2H2/(2CO2+CO)CO/CO2H2/(2CO2+CO)
02.131.061.221.861.202.360.662.230.462.05
50.630.901.382.021.001.400.951.571.611.56
104.181.950.950.910.841.651.111.560.581.52
156.021.661.541.580.561.510.711.520.651.63

图5

不同催化剂装载浓度下兰炭及气化残焦的FTIR谱图"

图6

不同催化剂装载浓度下兰炭及气化残焦的XRD谱图"

1 汪寿建. 兰炭固定床连续气化制备清洁燃料气的应用与实践[J]. 化肥设计, 2017, 55(5): 5-10.
WangS J. Application and practice of continous preparation of clean fuel gas though coal gasification in semi-coke fixed bed[J]. Chemical Fertilizer Design, 2017, 55(5): 5-10.
2 SharmaA, TakanohashiT, SaitoI, et al. Effect of catalyst addition on gasification reactivity of HyperCoal and coal with steam at 775—700℃[J]. Fuel, 2008, 87(12): 2686-2690.
3 ZhangF, XuD, WangY, et al. Catalytic CO2 gasification of a Powder River Basin coal[J]. Fuel, 2013, 103(130): 161-170.
4 McKeeD W, SpiroC L, KoskyP G, et al. Catalysis of coal char gasification by alkali metal salts [J]. Fuel, 1983, 62(2): 217-220.
5 AkyurtluJ F, AkyurtluA. Catalytic gasification of Pittsburgh coal char by potassium sulphate and ferrous sulphate mixtures[J]. Fuel Processing Technology, 1988, 43(1): 71-86.
6 SongB H, YongW J, YunS B, et al. Steam gasification of a bituminous char catalyzed by a salt mixture of potassium sulfate and nikel nitrate[J]. Korean Chemical Engineering Research, 2003, 41(3): 349-356.
7 MurakamiK, SatoM, TsubouchiN, et al. Steam gasification of Indonesian subbituminous coal with calcium carbonate as a catalyst raw material[J]. Fuel Processing Technology, 2015, 129(129): 91-97.
8 WoodB , SancierK. The mechanism of the catalytic gasification of coal char: a critical review[J]. Catalysis Reviews, 1984, 26(2): 233-279.
9 KapteijnF, MoulijnJ A. Kinetics of the CO2 gasification of activated carbon[J]. Fuel, 1983, 62(2): 221-225.
10 陈彦, 张济宇.福建无烟煤Na2CO3催化气化过程的比表面变化特性[J].化工学报, 2012, 63(8): 2443-2452.
ChenY, ZhangJ Y. Variation of specific surface area in catalytic gasification process of Fujian anthracite with Na2CO3 catalyst[J]. CIESC Journal, 2012, 63(8): 2443-2452.
11 KarimiA, GrayM R. Effectiveness and mobility of catalysts for gasification of bitumen coke[J]. Fuel, 2011, 90(1): 120-125.
12 陈彦, 张济宇. Na2CO3催化剂对福建高变质无烟煤比表面及气化反应特性的影响[J]. 化工学报,2011, 62(10): 2768-2775.
ChenY, ZhangJ Y. Effects of catalyst loading of Na2CO3 on specific surface area and gasification characteristics of Fujian high-metamorphous anthracite[J]. CIESC Journal, 2011, 62(10): 2768-2775.
13 HurtR H, SarofimA F, LongwellJ P. The role of microporous surface area in the gasification of chars from a sub-bituminous coal[J]. Fuel, 1991, 70(9): 1079-1082.
14 YokoyamaS Y, TanakaK I, ToyoshimaI, et al. X-ray photoelectron spectroscopic study of the surface of carbon doped with potassium carbonate[J]. Chemistry Letters, 1980, 16(5): 599-602.
15 KopyscinskiJ, RahmanM, GuptaR, et al. K2CO3 catalyzed CO2 gasification of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere[J]. Fuel, 2014, 117(1): 1181-1189.
16 WangY, WangZ, HuangJ, et al. Catalytic gasification activity of Na2CO3 and comparison with K2CO3 for a high-aluminum coal char[J]. Energy & Fuels, 2015, 29(11): 6988-6998.
17 WangJ, JiangM, YaoY, et al. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane[J]. Fuel, 2009, 88(9): 1572-1579.
18 ChenS G, YangR T. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O[J]. Energy & Fuels, 1997, 11(2): 421-427.
19 XuK, HuS, SuS, et al. Study on char surface active sites and their relationship to gasification reactivity[J]. Energy & Fuels, 2013, 27(1): 118-125.
20 CerfontainM B, MoulijnJ A. Alkali-catalysed gasification reactions studied by in situ FTIR spectroscopy[J]. Fuel, 1983, 62(2): 256-258.
21 ZhangF, XuD, WangY, et al. CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst[J]. Applied Energy, 2015, 145: 295-305.
22 SamsD A, ShadmanF. Catalytic effect of potassium on the rate of char-CO2 gasification[J]. Fuel, 1983, 62(8): 880-882.
23 SaberJ M, KesterK B, FalconerJ L, et al. A mechanism for sodium oxide catalyzed CO2 gasification of carbon[J]. Journal of Catalysis, 1988, 109(2): 329-346.
24 WigmansT, ElfringM, MoulijnJ A, et al. On the mechanism of the potassium catalysed gasification of activated carbon: differences in physical behaviour of sodium- and potassium-carbonate[J]. Carbon, 1982, 20(2): 140.
25 MoulijnJ A, KapteijnF. Towards a unified theory of reactions of carbon with oxygen-containing molecules[J]. Carbon, 1995, 33(8): 1155-1165.
26 TahmasebiA, YuJ, HanY, et al. A study of chemical structure changes of Chinese lignite during fluidized-bed drying in nitrogen and air[J]. Fuel Process. Technol., 2012, 101: 85-93.
27 IbarraJ, MuñozE, MolinerR, et al. FTIR study of the evolution of coal structure during the coalification process[J]. Org. Geochem., 1996, 24(6/7): 725-735.
28 ShangJ Y, WolfE E. FTIR studies of potassium catalyst-treated gasified coal chars and carbons[J]. Fuel, 1983, 62(2): 252-255.
29 XieA J, ShenY H, LiX Y, et al. The role of Mg2+ and Mg2+ /amino acid in controlling polymorph and morphology of calcium carbonate crystal[J]. Materials Chemistry & Physics, 2007, 101(1): 87-92.
30 RamasamyV, RajkumarP, PonnusamyV, et al. Depth wise analysis of recently excavated Vellar river sediments through FTIR and XRD studies[J]. Indian Journal of Physics, 2009, 83(9): 1295-1308.
31 MakreskiP, JovanovskiG, DimitrovskaS, et al. Minerals from Macedonia (): Identification of some sulfate minerals by vibrational (infrared and Raman) spectroscopy[J]. Vibrational Spectroscopy, 2005, 39(2): 229-239.
32 WangJ, DuJ, ChangL, et al. Study on the structure and pyrolysis characteristics of Chinese western coals[J]. Fuel Process. Technol., 2010, 91(4): 430-433.
33 PereiraP, CsencsitsR, SomorjaiG A, et al. Steam gasification of graphite and chars at temperatures <1000 K over potassium-calcium-oxide catalysts[J]. Journal of Catalysis, 1989, 123(2): 463-476.
34 PereiraP, SomorjaiG A, HeinemannH, et al. Catalytic steam gasification of coals[J]. Energy & Fuels, 1992, 6(4): 407-410.
35 JiangM Q, ZhouR, HuJ, et al. Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char: influences of calcium species[J]. Fuel, 2012, 99(9): 64-71.
36 BrunoG, BuroniM, CarvaniL, et al. Water-insoluble compounds formed by reaction between potassium and mineral matter in catalytic coal gasification[J]. Fuel, 1988, 67(1): 67-72.
[1] 梅道锋, 赵海波, 晏水平. 基于NiO/Ca2Al2SiO7的沼气自热化学链重整制氢热分析动力学模拟[J]. 化工学报, 2019, 70(S1): 193-201.
[2] 商辉, 丁禹, 张文慧. 微波法制备生物柴油研究进展[J]. 化工学报, 2019, 70(S1): 15-22.
[3] 武永健, 罗春欢, 魏琳, 朱探金, 苏庆泉. 基于化学链燃烧的转炉放散煤气利用研究[J]. 化工学报, 2019, 70(5): 1923-1931.
[4] 魏砾宏, 郭良振, 蒋进元, 刘美佳, 杨天华. Fe2O3对甘氨酸热解特性及氮转化的影响[J]. 化工学报, 2019, 70(5): 1942-1950.
[5] 毛燕东, 李克忠, 刘雷, 辛峰. 添加剂对催化气化工艺中煤灰结渣性及气化性能影响研究[J]. 化工学报, 2019, 70(5): 1951-1963.
[6] 梁文胜, 刘江涛, 赵月, 黄伟, 左志军. NiO和Ni催化剂对苯甲酸热解机理的理论计算[J]. 化工学报, 2019, 70(4): 1429-1435.
[7] 王旭锋, 刘晶, 刘丰, 杨应举. 基于CoFe2O4载氧体的生物质化学链气化反应特性[J]. 化工学报, 2019, 70(4): 1583-1590.
[8] 宋宇淙, 丁晓墅, 闫亚辉, 王淑芳, 王延吉. 氧化石墨烯复合金属催化剂催化碳酸二甲酯合成反应性能[J]. 化工学报, 2019, 70(4): 1401-1408.
[9] 王鑫博, 张延平, 李秀萍, 赵荣祥. EMIES/nC9H10O2基低共熔溶剂的制备及其氧化脱硫活性的研究[J]. 化工学报, 2019, 70(4): 1567-1574.
[10] 胡凤腾, 姚建龙, 李小青, 李思汉, 严新焕. Sr改性Cu催化剂的果糖加氢制备甘露醇性能[J]. 化工学报, 2019, 70(4): 1420-1428.
[11] 侯莲霞, 袁兆平, 乔鸿昌, 周静红, 周兴贵. Ni-W2C催化葡萄糖氢解制备低碳二元醇反应机理研究[J]. 化工学报, 2019, 70(4): 1390-1400.
[12] 于海斌, 刘强, 周立坤, 陈赞, 罗超, 张贯艳, 乔利娜, 王建杰. MnO x /ZrO2 催化剂制备及催化臭氧氧化降解甲基橙[J]. 化工学报, 2019, 70(4): 1436-1445.
[13] 郭婉婉, 李如月, 黄军. 交联菲罗啉负载铜催化剂用于合成三甲基苯醌[J]. 化工学报, 2019, 70(3): 929-936.
[14] 李德生, 张超, 邓时海, 胡智丰, 李金龙, 刘元辉. 基于铁基质高效催化还原污水中硝酸盐氮的实验研究[J]. 化工学报, 2019, 70(3): 1065-1074.
[15] 王超, 李长明, 皇甫林, 李萍, 杨运泉, 高士秋, 余剑, 许光文. 赤泥催化剂的制备及其对模拟烟气中微量氨的脱除性能[J]. 化工学报, 2019, 70(3): 1056-1064.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .