化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1522-1531.doi: 10.11949/j.issn.0438-1157.20181218

• 能源和环境工程 • 上一篇    下一篇

枣泉煤分子模型构建及热解的分子模拟

冯炜(),高红凤,王贵,吴浪浪,许靖钦,李壮楣,李平,白红存(),郭庆杰   

  1. 宁夏大学省部共建煤炭高效利用与绿色化工国家重点实验室,化学化工学院,宁夏 银川 750021
  • 收稿日期:2018-10-17 修回日期:2018-12-11 出版日期:2019-04-05 发布日期:2018-12-19
  • 通讯作者: 白红存 E-mail:1812939016@qq.com;hongcunbai@nxu.edu.cn
  • 作者简介:<named-content content-type="corresp-name">冯炜</named-content>(1994—),女,硕士研究生,<email>1812939016@qq.com</email>|白红存(1985—),男,博士,副研究员,<email>hongcunbai@nxu.edu.cn</email>;<email>hongcunbai@gmail.com</email>
  • 基金资助:
    宁夏重点研发计划重大科技项目(2018BCE01002);宁夏回族自治区重点研发计划项目(2016BY005);宁夏高校项目(NGY2016064);宁夏高等学校一流学科建设项目(NXYLXK2017A04)

Molecular model and pyrolysis simulation of Zaoquan coal

Wei FENG(),Hongfeng GAO,Gui WANG,Langlang WU,Jingqin XU,Zhuangmei LI,Ping LI,Hongcun BAI(),Qingjie GUO   

  1. State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2018-10-17 Revised:2018-12-11 Online:2019-04-05 Published:2018-12-19
  • Contact: Hongcun BAI E-mail:1812939016@qq.com;hongcunbai@nxu.edu.cn

摘要:

以宁东枣泉煤为研究对象,使用工业分析、元素分析、X射线光电子能谱、13C固体核磁等表征手段和计算机辅助,构建获得枣泉煤大分子结构模型。经过分子动力学退火动力学模拟和几何结构全优化,与初始结构相比键长、键角发生明显改变,立体构型显著,芳香层片之间近似平行的排列方式明显。获得的傅里叶变换红外和13C固体核磁的实验与计算谱图总体吻合较好,进一步证明了构建模型的合理性。使用反应分子动力学方法模拟枣泉煤的热解过程,考察不同热解终温和升温速率对热解行为的影响。结果发现,随着温度的升高,反应速率逐渐加快。不同升温速率对枣泉煤热解过程中气体的产生有显著影响。在动力学模拟中大多产生C15以下的碎片,大分子的种类则并不多。随着升温速率的增加,气、液、固三相产物整体上都呈现下降的趋势。此外,还根据反应分子动力学模拟结果追踪了热解过程中CO2的形成机理,获得了三种不同的CO2形成路径。

关键词: 煤, 模型, 量子化学计算, 分子模拟, 热解

Abstract:

This work studied the macromolecular structure model of Zaoquan coal from Ningdong, China by means of various characterizations such as industrial analysis, elemental analysis, X-ray photoelectron spectroscopy and 13C nuclear magnetic resonance (NMR), combined with computer-aided techniques. After annealing dynamics simulation and fully geometric structural optimizations, the bond length, bond angle and the spatial configuration of coal molecular structure were changed significantly compared with the initial one. Also the arrangement mode of the aromatic layers became nearly parallel. The calculated spectra of Fourier transform infrared and 13C NMR agreed well with those in experiments, which further confirmed the obtained coal molecular model. Based on the molecular model, the effects of final temperature and heating rate upon chemical behavior of coal pyrolysis were studied by using the reactive force field molecular dynamics simulations. It was shown that the reaction rate was gradually increased as temperature increased. The heating rate was rather significant for gas generation during coal pyrolysis. In simulations, most of the fragments produced were below C15, while the species of macromolecules were the minority. As heating rate increased, the gas, liquid and solids products were all decreased. In addition, according to the results of reaction molecular dynamics simulation, the formation mechanism of CO2 in the pyrolysis process was traced, and three different CO2 formation paths were obtained.

Key words: coal, model, quantum chemical calculation, molecular modeling, pyrolysis

中图分类号: 

  • TQ 530

表1

煤样物化性质参数"

Proximate analysis/% Ultimate analysis/% Content/%(mass)
Mad Aad Vdaf Cdaf Hdaf Odaf Ndaf Sdaf Vitrinite Exinite Inertinite
6.58 2.24 25.49 72.81 3.85 20.31 0.83 0.35 29.00 0.00 71.00

表2

煤样原子比"

H/C O/C N/C S/C
0.63 0.21 0.01 0.00

图2

煤样的13C NMR谱图"

表3

煤样的结构参数百分比"

Sample fa fa C fa fa N fa H fa P fa S fa B fal fal * fal H fal O
ZQ 73.84% 3.37% 70.47% 29.75% 40.72% 7.73% 6.48% 15.54% 26.16% 10.44% 9.98% 5.74%

图3

煤样的XPS谱图"

表4

煤样的 C 1s、O 1s、N 1s XPS 数据"

Elemental peak Functionality Binding energy/eV Molar content/%
C 1s C—C, C—H 284.43 38.14
C—O 285.67 36.50
C ? O 286.79 18.97
COO— 289.75 6.39
O 1s inorg oxygen 530.58 2.93
C ? O 531.84 24.07
C—O - 533.06 58.84
COO - 534.60 9.75
adsorbed oxygen 536.04 4.41
N 1s pyridinic nitrogen 399.10 23.00
pyrrolic nitrogen 400.37 39.12
quatemary nitrogen 401.48 24.72
oxidized nitrogen 403.32 13.16

图4

煤分子结构3D模型"

图5

枣泉煤的 FT-IR和13C NMR实验及计算谱图"

图6

不同温度下煤热解过程中势能随时间的变化情况"

图7

不同温度下煤热解所得不同类型产物"

图8

不同升温速率下煤热解所得不同类型产物"

表5

煤热解模拟过程中CO2的生成机理"

Path Formation reaction
1
2
3
1 Lei Z , Yang D , Zhang Y H , et al . Constructions of coal and char molecular models based on the molecular simulation technology[J]. Journal of Fuel Chemistry & Technology, 2017, 45(7): 769-779.
2 Xie K C . Structure and Reactivity of Coal [M]. New York: Springer-Verlag Press, 2015: 1-27.
3 Mathews J P , Chaffee A L . The molecular representations of coal— a review[J]. Fuel, 2012, 96(7): 1-14.
4 Carlson G A . Computer simulation of the molecular structure of bituminous coal[J]. Energy & Fuels, 1992, 6(6): 771-778.
5 Zhang Z , Kang Q , Wei S , et al . Large scale molecular model construction of Xishan bituminous coal[J]. Energy & Fuels, 2017, 31: 1310-1317.
6 Mathews J P , Sharma A . The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel, 2012, 95(1): 19-24.
7 相建华, 曾凡桂, 李彬, 等 . 成庄无烟煤大分子结构模型及其分子模拟[J]. 燃料化学学报, 2013, 41(4): 391-399.
Xiang J H, Zeng F G, Li B, et al Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Chemistry and Technology, 2013, 41(4): 391-399.
8 Behar F , Hatcher P G . Artificial coalification of a fossil wood from brown coal by confined system pyrolysis[J]. Fuel & Energy Abstracts, 1996, 37(3): 984-994.
9 Salmon E , van Duin Act, Lorant F , et al . Early maturation processes in coal (2): Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures[J]. Organic Geochemistry, 2009, 40(12): 1195-1209.
10 Heek K H V , Hodek W . Structure and pyrolysis behaviour of different coals and relevant model substances[J]. Fuel, 1994, 73(6): 886-896.
11 Mushtaq F , Mat R , Ani F N . A review on microwave assisted pyrolysis of coal and biomass for fuel production[J]. Renewable & Sustainable Energy Reviews, 2014, 39(6): 555-574.
12 Abdelsayed V , Shekhawat D , Smith M W , et al . Microwave-assisted pyrolysis of Mississippi coal: a comparative study with conventional pyrolysis[J]. Fuel, 2018, 217: 656-667.
13 Gao S , Zhai L , Qin Y , et al . Investigation into the cleavage of chemical bonds induced by CO2 and its mechanism during the pressurized pyrolysis of coal[J]. Energy & Fuels, 2018, 32(3): 3243-3253.
14 陈兆辉, 高士秋, 许光文 . 煤热解过程分析与工艺调控方法[J]. 化工学报, 2017, 68(10): 3693-3707.
Chen Z H , Gao S Q , Xu G W . Analysis and control methods of coal pyrolysis process[J]. CIESC Journal, 2017, 68(10): 3693-3707.
15 van Duin Act, Dasgupta S , Lorant F , et al . ReaxFF: a reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41): 9396-9409.
16 Salmon E , van Duin Act, Lorant F , et al . Thermal decomposition process in algaenan of Botryococcus braunii race L. (2): Molecular dynamics simulations using the ReaxFF reactive force field[J]. Organic Geochemistry, 2009, 40(3): 416-427.
17 Wang H , Feng Y , Zhang X , et al . Study of coal hydropyrolysis and desulfurization by ReaxFF molecular dynamics simulation[J]. Fuel, 2015, 145: 241-248.
18 Wang J P , Li G Y , Guo R , et al . Theoretical and experimental insight into coal structure: establishing a chemical model for Yuzhou lignite[J]. Energy & Fuels, 2016, 31(1): 124-132.
19 Zhan J H , Wu R , Liu X , et al . Preliminary understanding of initial reaction process for subbituminous coal pyrolysis with molecular dynamics simulation[J]. Fuel, 2014, 134(9): 283-292.
20 Hong D , Guo X . Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel, 2017, 210: 58-66.
21 Li W , Zhu Y , Chen S , et al . Research on the structural characteristics of vitrinite in different coal ranks[J]. Fuel, 2013, 107(9): 647-652.
22 朱学栋, 朱子彬, 韩崇家, 等 . 煤中含氧官能团的红外光谱定量分析[J]. 燃料化学学报, 1999, (4): 335-339.
Zhu X D , Zhu Z B , Han C J , et al . Quantitative determination of oxygen containing functional groups in coal by FTIR spectroscopy[J]. Journal of Fuel Chemistry and Technology, 1999, (4): 335-339.
23 Hayashi J , Takahashi H , Doi S , et al . Reactions in brown coal pyrolysis responsible for heating rate effect on tar yield[J]. Energy & Fuels, 2000, 14(2): 400-408.
24 Yan G C , Zhang Z Q , Yan K F . Reactive molecular dynamics simulations of the initial stage of brown coal oxidation at high temperatures[J]. Molecular Physics, 2012, 111(1): 147-156.
25 Chen B , Diao Z J , Zhao Y L , et al . A ReaxFF molecular dynamics (MD) simulation for the hydrogenation reaction with coal related model compounds[J]. Fuel, 2015, 154(5): 114-122.
26 Bhoi S , Banerjee T , Mohanty K . Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF[J]. Fuel, 2014, 136(6): 326-333.
27 Zhou Z , Guo L , Chen L , et al . Study of pyrolysis of brown coal and gasification of coal-water slurry using the ReaxFF reactive force field[J]. International Journal of Energy Research, 2018, 42(7): 2465-2480.
28 刘振宇 . 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1438.
Liu Z Y . Advancement in coal chemistry: structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9): 1431-1438.
29 张小盟, 李宁煜, 高文青 . 宁夏煤炭利用效率的影响因素分析[J]. 煤炭加工与综合利用, 2017, (3): 59-65.
Zhang X M , Li N Y , Gao W Q . Analysis on the factors affecting the utilization efficiency of coal in Ningxia[J]. Coal Processing and Comprehensive Utilization, 2017, (3): 59-65.
30 李壮楣, 王艳美, 李平, 等 . 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报, 2018, 69(5): 2208-2216.
Li Z M , Wang Y M , Li P , et al . Macromolecular model construction and quantum chemical calculation of Ningdong Hongshiwan coal[J]. CIESC Journal, 2018, 69(5): 2208-2216.
31 Zhao Y , Truhlar D G . The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor. Chem. Acc., 2008, 120: 215-241.
32 Weismiller M R , van Duin Act, Lee J , et al . ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion[J]. Journal of Physical Chemistry A, 2010, 114: 5485-5492.
33 Zheng M , Li X , Liu J , et al . Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis[J]. Energy & Fuels, 2014, 28(1): 522–534.
34 张莉 . 五牧场11号煤结构模型构建及其超分子特征[D]. 太原: 太原理工大学, 2013.
Zhang L . Molecular structure model building and supermolecule characteristic of Wumuchang No.11 coal[D]. Taiyuan: Taiyuan University of Technology, 2013.
35 马伦, 陆大荣, 梁汉东, 等 . 神华长焰煤大分子结构特征的研究[J]. 燃料化学学报, 2013, 41(5): 513-522.
Ma L , Lu D R , Liang H D , et al . Preliminary study on macromolecular structure characteristics of Shenhua long flame coal[J]. Journal of Fuel Chemistry & Technology, 2013, 41(5): 513-522.
36 Zheng M , Li X , Nie F , et al . Investigation of overall pyrolysis stages for Liulin bituminous coal by large-scale ReaxFF molecular dynamics[J]. Energy & Fuels, 2017, 31(4): 3675−3683.
37 Li W , Zhu Y M , Wang G , et al . Molecular model and ReaxFF molecular dynamics simulation of coal vitrinite pyrolysis[J]. Journal of Molecular Modeling, 2015, 21(8): 188-200.
[1] 闫磊, 陈思宇, 肖美良子, 丁伟. 煤制烯烃基长链烷基二甲苯合成研究[J]. 化工学报, 2019, 70(S1): 235-241.
[2] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[3] 王超前, 王文龙, 李哲, 孙静, 宋占龙, 赵希强, 毛岩鹏. 基于微波诱导定向加热的污泥新型热解方法能耗分析[J]. 化工学报, 2019, 70(S1): 168-176.
[4] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[5] 洪迪昆, 操政, 杨昌敏, 刘亮, 郭欣. 钙催化苯酚反应的分子动力学模拟[J]. 化工学报, 2019, 70(5): 1788-1794.
[6] 汪勤, 张冰剑, 何畅, 陈清林. 基于能量目标的芳烃萃取精馏溶剂评价模型[J]. 化工学报, 2019, 70(5): 1815-1822.
[7] 武永健, 罗春欢, 魏琳, 朱探金, 苏庆泉. 基于化学链燃烧的转炉放散煤气利用研究[J]. 化工学报, 2019, 70(5): 1923-1931.
[8] 韩健, 刘新华, 何京东, 李虹嶙, 张楠. 民用解耦燃煤炉中的NO x 和CO同时减排[J]. 化工学报, 2019, 70(5): 1991-1998.
[9] 熊黠, 刘作华, 谷德银, 邱发成, 王靓, 陶长元, 王运东. 刚柔组合桨强化粉煤灰酸浸搅拌槽内固液混沌混合[J]. 化工学报, 2019, 70(5): 1693-1701.
[10] 魏砾宏, 郭良振, 蒋进元, 刘美佳, 杨天华. Fe2O3对甘氨酸热解特性及氮转化的影响[J]. 化工学报, 2019, 70(5): 1942-1950.
[11] 闫景春, 沈来宏, 蒋守席, 葛晖骏. 高钠煤化学链燃烧特性及煤焦气化反应动力学研究[J]. 化工学报, 2019, 70(5): 1913-1922.
[12] 梁倩卿, 马学虎, 王凯, 春江, 郝婷婷, 兰忠, 王亚雄. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281.
[13] 梁文胜, 刘江涛, 赵月, 黄伟, 左志军. NiO和Ni催化剂对苯甲酸热解机理的理论计算[J]. 化工学报, 2019, 70(4): 1429-1435.
[14] 郭玉梅, 曹丽琼, 郭彦霞, 燕可洲. 煤矸石和赤泥协同提取氧化铝过程矿相转变研究[J]. 化工学报, 2019, 70(4): 1542-1549.
[15] 苏银皎, 刘轩, 李丽锋, 李晓航, 姜平, 滕阳, 张锴. 三类煤阶煤中汞的赋存形态分布特征[J]. 化工学报, 2019, 70(4): 1559-1566.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .