化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1761-1771.doi: 10.11949/j.issn.0438-1157.20181199

• 流体力学与传递现象 • 上一篇    下一篇

太阳能热水相变炕体蓄放热性能及影响因素

李文玉(),孙亮亮(),袁艳平,曹晓玲,向波   

  1. 西南交通大学机械工程学院,四川 成都 610031
  • 收稿日期:2018-10-15 修回日期:2019-01-26 出版日期:2019-05-05 发布日期:2019-05-10
  • 通讯作者: 孙亮亮 E-mail:lwylucy@126.com;sunliangliang@home.swjtu.edu.cn
  • 作者简介:<named-content content-type="corresp-name">李文玉</named-content>(1993—),女,硕士研究生,<email>lwylucy@126.com</email>|孙亮亮(1982—),女,博士,讲师,<email>sunliangliang@home.swjtu.edu.cn</email>
  • 基金资助:
    国家自然科学基金青年科学基金项目(51808453);中国博士后科学基金面上项目(2018M633399)

Heat storage and release characteristics of solar phase change Kang and influence factors

Wenyu LI(),Liangliang SUN(),Yanping YUAN,Xiaoling CAO,Bo XIANG   

  1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
  • Received:2018-10-15 Revised:2019-01-26 Online:2019-05-05 Published:2019-05-10
  • Contact: Liangliang SUN E-mail:lwylucy@126.com;sunliangliang@home.swjtu.edu.cn

摘要:

提出一种太阳能热水相变蓄热炕的新型供暖系统,系统无须设置水箱,仅使用炕板与相变材料作为蓄热装置,可有效提高供暖效率。基于Fluent数值模拟平台,建立相变炕的二维非稳态传热模型,研究相变炕的蓄放热性能,并与混凝土炕的热性能进行对比;还分析了相变材料的相变温度和潜热对相变炕蓄放热性能的影响。结果表明,在设定工况下,与混凝土炕相比,上炕面的日间与夜间稳定温度分别提高2℃和4℃,上炕面最大温差由3.7℃降至0.8℃,全天得热量提高了66.36%。因此,相变炕具有上炕面温度较高、温度分布均匀、得热量大以及保温性能好等优点;提高相变温度,炕体得热量会有所减少,但对提升上炕面温度作用显著;增大相变潜热,可以显著提高炕体得热量,但对提升上炕面温度作用不明显。

关键词: 太阳能, 相变炕体, 相变温度, 相变潜热, 数值模拟

Abstract:

The system combining the solar water and phase change heat storage Kang is put forward. Instead of water tank, Kang plate and phase change material are used as heat storage devices to availably improve the heating efficiency in this system. Based on Fluent, two-dimensional unsteady heat transfer model of the Kang is established. The heat storage and release characteristics of phase change Kang is studied and compared with the thermal properties of concrete material Kang. The effects of phase change temperature and latent heat of phase change materials on the heat storage and release characteristic of Kang are also analyzed. Under the working condition of this article, the stable temperatures of the upper surface of Kang of day and night increase by 2℃ and 4℃, respectively. The largest surface temperature difference of Kang decreases from 3.7℃ to 0.8℃. The heat increased by 66.36%. The phase change heat storage Kang has the advantages of high temperature of the upper surface of Kang, uniform temperature distribution, good heat-insulation property and large heat storage capacity. Results show that the temperature of the upper surface of Kang at night increase significantly, with the increase of phase change temperature, but the heat gain of Kang is reduced. Increasing the latent heat has little effect on the temperature of the upper surface of Kang, while significant effect on the heat gain of the Kang.

Key words: solar energy, phase change heat storage Kang, phase change temperature, phase change latent heat, numerical simulation

中图分类号: 

  • TK 512

图1

相变蓄热炕体复合系统"

图2

炕体的剖面示意图"

表1

炕体材料的物性参数及几何参数"

材料名称

厚度/

mm

密度/

(kg·m-3)

比热容/

(J·(kg·K)-1)

热导率/

(W·(m·K)-1)

水泥砂浆 30 1800 1050 0.93
卵石混凝土 60 2300 920 1.51
聚苯乙烯 20 30 1380 0.042
钢筋混凝土 100 2500 920 1.74

表2

相变材料的物性参数"

密度/

(kg·m-3)

比热容/

(J·(kg·K)-1)

热导率/

(W·(m·K)-1)

运动黏度/

(m2·s-1)

热膨胀系数/K-1
890 2090 0.149 0.00507 0.000984

图3

炕体基本传热单元"

图4

网格无关性与时间步长无关性验证"

图5

不同填充工况下墙的测点温度"

表3

材料的物性参数"

材料

密度/

(kg·m-3)

热导率/

(W·(m·K)-1)

比热容/

(J·(kg·K)-1)

十六醇-癸酸 861.57 0.155 2490
粉煤灰 2600 0.2 920
混凝土 2165 1.1 380

表4

数值模拟的误差分析"

测点 误差范围/% 平均误差/%
相变墙A点 0.08~3.11 0.91
混凝土墙A点 0.48~4.96 2.63
相变墙B点 0.31~5.04 2.11
混凝土墙B点 2.8~5.18 4.17

图6

不同填充工况上炕面平均温度随时间的变化"

图7

不同填充工况上炕面测点温度随时间的变化"

图8

不同填充工况下炕面平均温度随时间的变化"

图9

加热管热通量与相变材料液相率随时间的变化"

图10

相变材料的熔化图像"

图11

相变温度对上炕面平均温度和液相率的影响"

图12

不同相变温度下总得热量、日间放热量和夜间放热量"

图13

相变潜热对上炕面平均温度的影响"

图14

不同相变潜热下总得热量、日间放热量和夜间放热量"

1 清华大学建筑节能研究中心 . 中国建筑节能年度发展研究报告(2008)[M]. 北京: 中国建筑工业出版社, 2008: 173.
Building Energy Conservation Research Center, University Tsinghua . 2008 Annual Report on China Building Energy Efficiency[M]. Beijing: China Architecture & Building Press, 2008: 173.
2 Zhuang Z , Li Y G , Chen B , et al . Chinese Kang as a domestic heating system in rural northern China—a review[J]. Energy and Buildings, 2009, 41(1): 111-119.
3 Qian H , Li Y G , Zhang X S , et al . Surface temperature distribution of Chinese Kangs[J]. International Journal of Green Energy, 2010, 7(3): 347-360.
4 高翔翔, 胡冗冗, 刘加平, 等 . 北方炕民居冬季室内热环境研究[J]. 建筑科学, 2010, 26(2): 37-40.
Gao X X , Hu R R , Liu J P , et al . Research on winter indoor thermal environment of courtyard house with Chinese Kang in north China[J]. Build Science, 2010, 26(2): 37-40.
5 刘满, 夏晓东 . 辽宁省农村住宅的采暖方式与能耗研究[J]. 建筑节能, 2007, 35(7): 56-59.
Liu M , Xia X D . Research on heating methods and energy consumption of rural houses in Liaoning province[J]. Energy Consumption, 2007, 35(7): 56-59.
6 张寅平, 胡汉平, 孔祥冬, 等 . 相变贮能——理论和应用[M]. 合肥: 中国科学技术大学出版社, 1996: 1-5.
Zhang Y P , Hu H P , Kong X D , et al . Latent Heat Storage—Theory and Application[M]. Hefei: University of Science and Technology of China Press, 1996: 1-5.
7 袁艳平, 向波, 曹晓玲, 等 . 建筑相变储能技术研究现状与发展[J]. 西南交通大学学报, 2016, 51(3): 585-598.
Yuan Y P , Xiang B , Cao X L , et al . Research status and development on latent energy storage technology of building[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 585-598.
8 Yang M , Yang X D , Wang P S , et al . A new Chinese solar Kang and its dynamic heat transfer model[J]. Energy and Buildings, 2013, 62(3): 539-549.
9 Yang M , Yang X D , Wang Z F , et al . Thermal analysis of a new solar Kang system[J]. Energy and Buildings, 2014, 75(2): 531-537.
10 王崇杰, 管振忠, 张蓓, 等 . 传统火炕的生态技术改造——太阳炕系统[C]//中国建筑学会技术分会, 东南大学建筑分会. 绿色建筑与建筑技术. 北京: 中国建筑工业出版社, 2006: 566-569.
Wang C J , Guan Z Z , Zhang B , et al . Ecological and technological reform of traditional fire Kang—solar Kang system[C]// Technical Branch of China Architectural Society, Architectural Branch of Southeast University. Green Building and Building Technology. Beijing: China Architecture & Building Press, 2006: 566-569.
11 冯国会, 王茜, 李刚, 等 . 太阳能炕采暖系统的试验研究[J]. 可再生能源, 2013, 31(3): 11-13.
Feng G H , Wang Q , Li G , et al . Experimental study on solar Kang heating system[J]. Renewable Energy Resources, 2013, 31(3): 11-13.
12 李刚, 李小龙, 李世鹏, 等 . 太阳能辅助火炕供暖系统热工性能[J]. 沈阳建筑大学学报(自然科学版), 2014, 30(2): 305-311.
Li G , Li X L , Li S P , et al . Experimental study on solar added Kang heating system[J]. Journal of Shenyang Jianzhu University (Natural Science), 2014, 30(2): 305-311.
13 张玲 . 寒冷地区农居太阳能炕采暖系统设计研究[D]. 济南: 山东建筑大学, 2010.
Zhang L . Design research of solar Kang heating system used in rural residences in cold area[D]. Jinan: Shangdong Jianzhu University, 2010.
14 He W , Jiang Q Y , Ji J , et al . A study on thermal performance, thermal comfort in sleeping environment and solar energy contribution of solar Chinese Kang[J]. Energy and Buildings, 2013, 58(2): 66-75.
15 江清阳 . 与新型百叶集热墙结合的复合太阳能炕系统实验和理论研究[D]. 合肥: 中国科学技术大学, 2012.
Jiang Q Y . Experimental and numerical study on solar Chinese Kang system combined with novel collector-trombe wall[D]. Hefei: University of Science and Technology of China, 2012.
16 李刚, 池兰, 冯国会, 等 . 相变蓄能火炕热舒适性的试验[J]. 农业工程学报, 2016, 32(11): 244-249.
Li G , Chi L , Feng G H , et al . Experiment on thermal comfort performance of phase-change energy storage Kang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(11): 244-249.
17 徐洪波, 焦庆余, 徐国堂 . 高效预制组装架空火炕的研究[J]. 农业工程学报, 1991, 27(3): 81-86.
Xu H B , Jiao Q Y , Xu G T . The research of the high efficiency prefabricated and combined-suspend heatable brick bed[J]. Transactions of the Chinese Society of Agricultural Engineering, 1991, 27(3): 81-86.
18 冯革宇, 刘博智 . 用数值模拟方法优化设计吊炕研究[J]. 建筑热能通风空调, 2009, 28(5): 53-57.
Feng G Y , Liu B Z . Optimization design of suspended Kang based on numerical simulation[J]. Building Energy & Environment, 2009, 28(5): 53-57.
19 牛叔文, 钱玉杰, 胡莉莉, 等 . 甘肃庄浪县农户吊炕的热效率模拟分析[J]. 农业工程学报, 2013, 29(6): 193-201.
Niu S W , Qian Y J , Hu L L , et al . Model analysis on thermal efficiency of suspended Kang of rural households in Zhuanglang county, Gansu province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(6): 193-201.
20 Macfarlane W V . Thermal comfort zones[J]. Architectural Science Review, 1958, 1(1): 1-14.
21 Chrenko R A . Indoor climate: effects on human comfort, performance and health: P. O. Fanger and O. Valbjorn, eds, Danish Building Research Institute, Copenhagen (1979) 895 pp[J]. International Journal of Refrigeration, 1980, 3(3): 173-174.
22 Choi J W . Bed climate of Korean using ondol heating system[J]. Journal of Thermal Biology, 1993, 18(5): 399-403.
23 李净, 刘艳峰, 宋聪, 等 . 西北民居冬季睡眠被褥微气候研究[J]. 建筑科学, 2016, 32(2): 65-69.
Li J , Liu Y F , Song C , et al . Winter bedding microclimate in rural houses in northwest China[J]. Building Science, 2016, 32(2): 65-69.
24 中华人民共和国住房和城乡建设部 . 农村火炕系统通用技术规程: JGJ/T 358—2015[S]. 北京: 中国建筑工业出版社, 2015.
Ministry of Housing and Urban-Rural Development of the People's Republic of China . Technical specification for rural Kang system: JGJ/T 358—2015[S]. Beijing: China Architecture & Building Press, 2015.
25 张群力, 高岩, 狄洪发 . 低温热水型相变蓄能地板采暖房间动态热性能研究[J]. 太阳能学报, 2015, 36(4): 943-949.
Zhang Q L , Gao Y , Di H F . Research on the dynamic performance of room with low temperature hot water floor heating system thermal energy storage[J]. Acta Energiae Solaris Sinica, 2015, 36(4): 943-949.
26 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量检验检疫总局 . 农村居住建筑节能设计标准: GB/T 50824—2013[S]. 北京: 中国建筑工业出版社, 2013.
Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China . Design standard for energy efficiency of rural residential buildings: GB/T 50824—2013[S]. Beijing: China Architecture & Building Press, 2013.
27 陆耀庆 . 实用供热空调设计手册[M]. 2版.北京: 中国建筑工业出版社, 2008: 496.
Lu Y Q . Design Manual of Practical Heating and Air Conditioning[M]. 2nd ed. Beijing: China Architecture & Building Press, 2008: 496.
28 刘艳峰 . 地板供暖设计与运行基础理论研究[D]. 西安: 西安建筑科技大学, 2004.
Liu Y F . Study on basic theory of designing and running control of imbed pipe heating[D]. Xi’an: Xi’an University of Architecture and Technology, 2004.
29 Wang S K . Handbook of Air Conditioning and Refrigeration[M]. 2nd ed. The United States of America: McGraw-Hill Companies, 2000: 68-72.
30 杨颖, 张盼 . 建筑用新型复合相变材料储能过程的热性能研究[J]. 化工新型材料, 2015, 43(1): 120-122.
Yang Y , Zhang P . Thermal performance study on energy storage of new composite phase materials used in building envelope[J]. New Chemical Materials, 2015, 43(1): 120-122.
[1] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[2] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[3] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[4] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[5] 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308.
[6] 闫鑫, 徐进良. 超疏水表面太阳能加热金-水纳米流体液滴蒸发特性[J]. 化工学报, 2019, 70(3): 892-900.
[7] 吴晅, 李晓瑞, 马骏, 秦梦竹, 周雅慧, 李海广. 不同管口浸没方式下气泡生成行为特性[J]. 化工学报, 2019, 70(3): 901-912.
[8] 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
[9] 陈传刚, 丁雪兴, 陆俊杰, 张伟政, 陈金林. 摩擦副界面微造型序列对气体密封性能的影响[J]. 化工学报, 2019, 70(3): 1016-1026.
[10] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
[11] 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
[12] 倪城振, 杜文莉, 胡贵华. 乙烯裂解炉耦合模拟中湍流模型的影响分析[J]. 化工学报, 2019, 70(2): 450-459.
[13] 夏红桃, 邹思宇, 肖杰. 随机粗糙表面上剪切变稀流体液滴的沉积过程模拟[J]. 化工学报, 2019, 70(2): 634-645.
[14] 熊攀, 鄢曙光, 刘玮寅. 基于响应曲面法的旋风分离器结构优化[J]. 化工学报, 2019, 70(1): 154-160.
[15] 李静岩, 刘中良, 周宇, 李艳霞. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 2019, 70(1): 72-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .