化工学报 ›› 2019, Vol. 70 ›› Issue (3): 883-891.doi: 10.11949/j.issn.0438-1157.20181168

• 流体力学与传递现象 • 上一篇    下一篇

圆柱壁面上液滴凝固相变对其运动行为的影响

周鑫1(),邓乐东1,王宏1,2(),朱恂1,2,陈蓉1,2,廖强1,2,丁玉栋1,2   

  1. 1. 重庆大学工程热物理研究所,重庆 400030
    2. 低品位能源利用技术及系统教育部重点实验室,重庆 400030
  • 收稿日期:2018-10-09 修回日期:2018-12-19 出版日期:2019-03-05 发布日期:2018-12-19
  • 通讯作者: 王宏 E-mail:1525435144@qq.com;hongwang@cqu.edu.cn
  • 作者简介:<named-content content-type="corresp-name">周鑫</named-content>(1995—),男,硕士研究生,<email>1525435144@qq.com</email>|王宏(1978—),男,博士,教授,<email>hongwang@cqu.edu.cn</email>
  • 基金资助:
    国家自然科学基金项目(51676022);中央高校基本科研业务经费项目(2018CDXYDL0001)

Effect of cooled cylindrical surface on droplet dynamic behavior

Xin ZHOU1(),Ledong DENG1,Hong WANG1,2(),Xun ZHU1,2,Rong CHEN1,2,Qiang LIAO1,2,Yudong DING1,2   

  1. 1. Institute of Engineering Thermophysics, Chongqing 400030, China
    2. Key Laboratory of Low-Grade Energy Utilization Technologies & Systems, MOE, Chongqing University, Chongqing 400030, China
  • Received:2018-10-09 Revised:2018-12-19 Online:2019-03-05 Published:2018-12-19
  • Contact: Hong WANG E-mail:1525435144@qq.com;hongwang@cqu.edu.cn

摘要:

采用CLSVOF耦合焓-多孔介质方法对单液滴撞击低温光滑圆柱壁面的现象进行数值模拟研究,揭示了壁面温度、壁面浸润性和液滴撞击速度等因素对液滴撞击低温光滑圆形壁面后动力学行为及相变特性的影响,研究中主要关注两个重要参数的变化规律:液膜高度变化和液滴对壁面的润湿特性。研究表明:提高壁面疏水性能可有效减小液滴碰撞圆柱的铺展润湿面积,从而减小冻结面积,降低结冰的危害程度;由于圆柱壁面的曲率作用,液滴撞击疏水圆柱壁面会出现液膜断裂,但在极低温度下,可抑制液膜在圆形壁面上的分裂,导致液膜在壁面上的铺展面积有所增加,防结冰性能下降。

关键词: 液滴撞击, 多相流, 相变, 数值模拟, 圆柱壁面

Abstract:

The prevention and control of ice accumulation has important applications in aviation, building construction and power grid construction. A deep physical insight of the ice forming on the cylindrical surface would give an instruction to the ice-removal strategies for energy conversion devices. Simulations were performed using CLSVOF (coupled level-set and volume of fluid) to track the air-water interface and an enthalpy-porosity method to capture the phase transition. The effects of learning behavior and phase transition characteristics are mainly concerned with the variation of two important parameters: the change of liquid film height and the wetting characteristics of droplets on the wall. The results showed that improve the wall hydrophobicity performance, which could effectively reduce the spreading wetted area of the droplet impact cylinder, thereby reducing the frozen area and decreasing the damage degree of icing. Due to the curvature of the cylinder, the liquid film breaks when the droplet hits the hydrophobic cylindrical wall. However, at extremely low temperature, it can inhibit the splitting of the liquid film on the circular wall surface, resulting in an increase in the spreading area of the liquid film on the wall surface, and the icing phenomenon becomes more serious.

Key words: droplet impact, multiphase flow, phase change, numerical simulation, cylindrical surface

中图分类号: 

  • TQ 028.8

图1

计算域的网格划分方法及网格无关性验证"

图2

液滴撞击低温平壁面实验[30]和模拟在相同时刻下的形态对比"

图3

参数测量示意图"

图4

单液滴撞击低温光滑圆形壁面过程中相变过程和速度矢量变化"

图5

单液滴撞击不同浸润性低温光滑圆柱的运动演变过程(v=0.5 m/s, β=0.5, T=-50℃)"

图6

单液滴撞击不同浸润性低温光滑圆柱下α和δ的变化"

图7

单液滴撞击不同温度光滑圆形壁面的运动演变过程(v=0.5 m/s, β=0.5, θ=105°)"

图8

单液滴撞击不同温度光滑圆形壁面下α和δ的变化"

图9

单液滴以不同速度撞击光滑圆形壁面下α和δ的变化"

1 金传芳, 郑国璋, 韩军青. 2008年初我国南方低温雨雪冰冻灾害分析[J]. 山西师范大学学报(自然科学版), 2009, 23(2): 94-98.
JinC F, ZhengG Z, HanJ Q, et al. Analysis of the freezing disasters of low temperature rain and snow in southern China in early 2008[J]. Journal of Shanxi Normal University (Natural Science Edition), 2009, 23(2): 94-98.
2 胡琴, 于洪杰, 徐勋建, 等. 分裂导线覆冰扭转特性分析及等值覆冰厚度计算[J]. 电网技术, 2016, 40(11): 3615-3620.
HuQ, YuH J, XuX J, et al. Study on torsion characteristic and equivalent ice thickness of bundle conductors[J]. Power System Technology, 2016, 40(11): 3615-3620.
3 殷水清, 赵珊珊, 王遵娅, 等. 全国电线结冰厚度分布及等级预报模型[J]. 应用气象学报, 2009, 20(6): 722-728.
YinS Q, ZhaoS S, WangJ Y, et al. National wire icing thickness distribution and grade prediction model[J]. Journal of Applied Meteorological Science, 2009, 20(6): 722-728.
4 范瑶, 王宏, 朱恂, 等. 壁面曲率及过冷度对液滴铺展特性的影响[J]. 化工学报, 2016, 67(7): 2709-2717.
FanY, WangH, ZhuX, et al. Effect of curvature and undercooling degree of surface on behavior of droplet spreading [J]. CIESC Journal, 2016, 67(7): 2709-2717.
5 WorthingtonA M . A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate [J]. Proceedings of the Royal Society of London, 1876, 25(171-178): 261-272.
6 MaoT, KuhnD C S, TranH. Spread and rebound of liquid droplets upon impact on flat surfaces[J]. AIChE Journal, 1997, 43(9): 2169-2179.
7 HeungsupP, CarrW W, ZhuJ, et al. Single drop impaction on a solid surface[J]. AIChE Journal, 2010, 49(10): 2461-2471.
8 RiobooR, MarengoM, TropeaC. Time evolution of liquid drop impact onto solid, dry surfaces[J]. Experiments in Fluids, 2002, 33(1): 112-124.
9 HungL S, YaoS C. Experimental investigation of the impaction of water droplets on cylindrical objects[J]. International Journal of Multiphase Flow, 1999, 25(8): 1545-1559.
10 LiangG T. Special phenomena of droplet impact on an inclined wetted surface with experimental observation[J]. Acta Physica Sinica, 2013, 62(8): 084707.
11 梁超, 王宏, 朱恂, 等. 液滴撞击不同浸润性壁面动态过程的数值模拟[J]. 化工学报, 2013, 64(8): 2745-2751.
LiangC, WangH, ZhuX, et al. Numerical simulation of droplet impact on surfaces with different wettability[J]. CIESC Journal, 2013, 64(8): 2745-2751.
12 杨宝海, 王宏, 朱恂, 等. 速度对液滴撞击超疏水壁面行为特性的影响[J]. 化工学报, 2012, 63(10): 3027-3033.
YangB H, WangH, ZhuX, et al. Effect of velocity on behavior of droplet impacting on superhydrophobic surface[J]. CIESC Journal, 2012, 63(10): 3027-3033.
13 LiangG, GuoY, YangY, et al. Liquid sheet behaviors during a drop impact on wetted cylindrical surfaces[J]. International Communications in Heat and Mass Transfer, 2014, 54(5): 67-74.
14 FlemingsM C. Solidification Processing[M]. New York: McGraw-Hill, 1974.
15 SchiaffinoS, SoninA A. Molten droplet deposition and solidification at low Weber numbers[J]. Physics of Fluids, 1998, 9(11): 3172-3187.
16 JungS, TiwariM K, DoanN V, et al. Mechanism of supercooled droplet freezing on surfaces[J]. Nature Communications, 2012, 3: 615.
17 AlaviS, Passandideh-FardM, MostaghimiJ. Simulation of semi-molten particle impacts including heat transfer and phase change[J]. Journal of Thermal Spray Technology, 2012, 21(6): 1278-1293.
18 YaoY, LiC, ZhangH, et al. Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces[J]. Applied Surface Science, 2017, 419: 52-62.
19 冷梦尧, 常士楠, 丁亮. 不同浸润性冷表面上水滴碰撞结冰的数值模拟[J]. 化工学报, 2016, 67(7): 2784-2792.
LengM Y, ChangS N, DingL, et al. Numerical simulation of droplet impinging and freezing on cold surfaces with different wettability[J]. CIESC Journal, 2016, 67(7): 2784-2792.
20 LiangG, YangY, GuoY, et al. Rebound and spreading during a drop impact on wetted cylinders[J]. Experimental Thermal and Fluid Science, 2014, 52(52): 97-103.
21 LiuY, AndrewM, JingL, et al. Symmetry breaking in drop bouncing on curved surfaces[J]. Nature Communications, 2015, 6: 10034.
22 AndrewM, LiuY, YeomansJ. Variation of the contact time of droplets bouncing on cylindrical ridges with ridge size[J]. Langmuir, 2017, 33(30): 7583-7587.
23 LiH, RoismanI V, TropeaC. Influence of solidification on the impact of supercooled water drops onto cold surfaces[J]. Experiments in Fluids, 2015, 56(6): 133.
24 YaoY, LiC, TaoZ, et al. Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface[J]. Applied Thermal Engineering, 2018, 137: 83-92.
25 YangG, GuoK, LiN. Experimental study on the freezing mechanism of super-cooled water droplets impacting on a wire[J]. Journal of Refrigeration, 2011, 32(5): 37-41.
26 杨国敏, 郭开华, 李宁. 过冷水滴碰撞导线表面结冰机理的实验研究[J]. 制冷学报, 2011, 32(5): 37-41.
YangG M, GuoK H, LiN, et al. Experimental study on the freezing mechanism of super-cooled water droplets impacting on a wire[J]. Journal of Refrigeration, 2011, 32(5): 37-41.
27 SussmanM, PuckettE G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2): 301-337.
28 VollerV R, PrakashC. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719.
29 LiangG , ShenS , MuX . Numerical analysis and insight of drop impacting dynamics upon a liquid film[J]. Acta Mechanica, 2017, 228(2): 385-400.
30 DingB, WangH, ZhuX, et al. How supercooled superhydrophobic surfaces affect dynamic behaviors of impacting water droplets[J]. International Journal of Heat and Mass Transfer, 2018, 124: 1025-1032.
[1] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[2] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[3] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[4] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[5] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[6] 苏武, 石孝刚, 吴迎亚, 高金森, 蓝兴英. 乙炔加氢制乙烯浆态床反应器的CFD模拟[J]. 化工学报, 2019, 70(5): 1858-1867.
[7] 周麟晨, 孙志高, 陆玲, 王赛, 李娟, 李翠敏. 有机相变乳液中HCFC–141b水合物生成及稳定性[J]. 化工学报, 2019, 70(5): 1674-1681.
[8] 王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271.
[9] 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308.
[10] 王舜浩, 朱文俐, 胡正根, 周芮, 余柳, 王彬, 张小斌. 液氢缩比贮箱蒸发特性数值模拟及实验验证[J]. 化工学报, 2019, 70(3): 840-849.
[11] 王耀武, 彭建平, 狄跃忠, 蒿鹏程. 铝电解槽干式防渗料在电解过程中的反应机理探讨[J]. 化工学报, 2019, 70(3): 1035-1041.
[12] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
[13] 刘小诗, 邹得球, 贺瑞军, 马先锋. 氧化石墨烯/石蜡复合相变乳液的制备及对流传热特性[J]. 化工学报, 2019, 70(3): 1188-1197.
[14] 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
[15] 吴晅, 李晓瑞, 马骏, 秦梦竹, 周雅慧, 李海广. 不同管口浸没方式下气泡生成行为特性[J]. 化工学报, 2019, 70(3): 901-912.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .