化工学报 ›› 2019, Vol. 70 ›› Issue (3): 1135-1143.doi: 10.11949/j.issn.0438-1157.20181079

• 材料化学工程与纳米技术 • 上一篇    下一篇

金属-有机骨架材料CO2捕获性能的大规模计算筛选

王磊1(),方桂英2(),阳庆元1()   

  1. 1. 北京化工大学有机无机复合材料国家重点实验室,北京 100029
    2. 江西农业大学理学院,江西 南昌 330045
  • 收稿日期:2018-09-26 修回日期:2018-12-10 出版日期:2019-03-05 发布日期:2018-12-20
  • 通讯作者: 方桂英,阳庆元 E-mail:evacolin@163.com;guiyingfang1012@163.com;qyyang@mail.buct.edu.cn
  • 作者简介:<named-content content-type="corresp-name">王磊</named-content>(1993—),男,硕士研究生,<email>evacolin@163.com</email>|方桂英(1964—),女,学士,副教授,<email>guiyingfang1012@163.com</email>|阳庆元(1976—),男,博士,教授,<email>qyyang@mail.buct.edu.cn</email>
  • 基金资助:
    国家重大基础研究计划项目(2016YFA0201701);中央高校基本科研业务费专项资金(buctrc201727)

Performance of metal-organic frameworks for CO2 capture from large-scale computational screening

Lei WANG1(),Guiying FANG2(),Qingyuan YANG1()   

  1. 1. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
    2. School of Sciences, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
  • Received:2018-09-26 Revised:2018-12-10 Online:2019-03-05 Published:2018-12-20
  • Contact: Guiying FANG,Qingyuan YANG E-mail:evacolin@163.com;guiyingfang1012@163.com;qyyang@mail.buct.edu.cn

摘要:

全球性温室效应形势的日趋严重,迫切需要研究和开发可用于CO2捕集的高性能材料。对于含有双铜船桨型片段(Cu2(COO)4)的MOF材料,因其结构中含有配位不饱和的Cu金属位点,在低压区域的CO2捕获方面展现出优异的性能。目前,大规模计算筛选工作主要是基于传统的分子力场,无法对此类Cu-MOFs中主客体分子间的相互作用进行准确描述。基于量化计算获得的精确分子力场,利用Monte Carlo分子模拟方法考察了常温常压条件下763个基于Cu-OMS的MOF材料对CO2存储和CO2/N2的分离行为。不仅筛选出潜在的高性能材料,而且揭示出了材料的结构与其性能之间的关系和具有优良性能的材料结构特征,可为面向特定应用的新材料设计和合成提供理论参考。

关键词: 金属-有机骨架材料, Cu开放金属位点, 吸附, 分离, 分子模拟, 大规模筛选

Abstract:

The global greenhouse effect situation is becoming more and more serious, and there is an urgent need to research and develop high-performance materials that can be used for CO2 capture. Metal?organic frameworks (MOFs) containing an inorganic unit of copper paddle-wheel (Cu2(COO)4) have excellent performance in CO2 capture in low pressure region because of their coordinatively unsaturated Cu sites. However, large-scale computational screening work available so far mainly used conventional molecular force field, which cannot accurately describe the host-guest molecules involved in current study. Thus, on the basis of accurate molecular force fields derived from quantum mechanics calculations, grand canonical Monte Carlo simulation method was adopted to investigate CO2 storage and CO2/N2 separation behaviors of 763 MOFs with Cu-OMS under ambient conditions. Not only were promising MOFs found through large-scale screening, but the established structure-performance relationships and the structural characteristics of high-performance materials were revealed, providing a theoretical foundation for design and synthesis of new materials for targeted applications.

Key words: metal-organic frameworks, open Cu sites, adsorption, separation, molecular simulation, large-scale screening

中图分类号: 

  • TQ 028.8

表1

描述MOFs中Cu开放金属位点和CO2分子之间特殊作用的Morse势能参数"

Atom pairD0/(kJ/mol)R0/nmα
Cu-CO2-O[31]1.01130.331310.5781

图1

N2在Cu-BTC和Cu-TDPAT(a), ZJU-8a和ZJNU-40a(b)中的模拟吸附等温线与实验值对比"

图2

常温常压下763个Cu-OMS MOFs中CO2吸附量的模拟构效关系:材料最大孔径(a),无限稀释吸附热(b)"

图3

常温常压下763种Cu-OMS MOF材料的CO2吸附性能与材料孔体积(a)、材料孔隙率(b)、比表面积(c)、吸附度(d)之间的"

图4

298 K和0.1 MPa条件下CO2在MAJJUF材料的微观吸附结构"

图5

常温常压下763种Cu-OMS MOF材料的CO2/N2分离选择性与1/ΔAD的关系"

图6

298 K和0.1 MPa下MOF材料的CO2/N2(15:85)选择性与其CO2吸附量之间的关系(正方形代表本工作中筛选出的两种前景材料;三角形代表目前文献中已经报道的最佳材料)"

图7

298 K和0.1 MPa条件下CO2和N2在NEYRIU材料的微观吸附结构(蓝色代表N2分子)"

1 BaeY S, SnurrR Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew. Chem. Int. Ed., 2011, 50(49): 11586-11596.
2 QuadrelliR, PetersonS. The energy-climate challenge: recent trends in CO2 emissions from fuel combustion[J]. Energy Policy, 2007, 35(11): 5938-5952.
3 YangQ Y, ZhongC L, ChenJ F. Computational study of CO2 storage in metal-organic frameworks[J]. J. Phys. Chem. C, 2008, 112(5): 1562-1569.
4 XiangS C, HeY B, ZhangZ G, et al. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions[J]. Nat. Commun., 2012, 3: 954.
5 LinZ D, LvZ Q, ZhouX, et al. Postsynthetic strategy to prepare ACN@Cu-BTCs with enhanced water vapor stability and CO2/CH4 separation selectivity[J]. Ind. Eng. Chem. Res., 2018, 57(10): 3765-3772.
6 SalehM, LeeH M, KempK C, et al. Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers[J]. ACS Appl. Mater. Interfaces, 2014, 6(10): 7325-7333.
7 HaszeldineR S. Carbon capture and storage: how green can black be?[J]. Science, 2009, 325: 1647-1652.
8 FurukawaH, CordovaK E, O'keeffeM, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341: 1230444.
9 Gómez-GualdrónD A, ColónY J, ZhangX, et al. Evaluating topologically diverse metal-organic frameworks for cryo-adsorbed hydrogen storage[J]. Energy Environ. Sci., 2016, 9(10): 3279-3289.
10 NugentP, BelmabkhoutY, BurdS D, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature, 2013, 495: 80-84.
11 HeY B, ZhouW, QianG D, et al. Methane storage in metal-organic frameworks[J]. Chem. Soc. Rev., 2014, 43(16): 5657-5678.
12 MasonJ A, VeenstraM, LongJ R. Evaluating metal-organic frameworks for natural gas storage[J]. Chem. Sci., 2014, 5(1): 32-51.
13 ZornozaB, TellezC, CoronasJ, et al. Metal organic framework based mixed matrix membranes: an increasingly important field of research with a large application potential[J]. Microporous Mesoporous Mater., 2013, 166: 67-78.
14 HuangC, SunR, LuH, et al. A pilot trial for fast deep desulfurization on MOF-199 by simultaneous adsorption-separation via hydrocyclones[J]. Sep. Purif. Technol., 2017, 182: 110-117.
15 LiuY, LiuH, HuY, et al. Density functional theory for adsorption of gas mixtures in metal-organic frameworks[J]. J. Phys. Chem. B, 2010, 114(8): 2820-2827.
16 LeeJ Y, FarhaO K, RobertsJ, et al. Metal-organic framework materials as catalysts[J]. Chem. Soc. Rev., 2009, 38(5): 1450-1459.
17 CaskeyS R, Wong-FoyA G, MatzgerA J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[J]. J. Am. Chem. Soc., 2008, 130(33): 10870-10871.
18 ZhaoX, WangY X, LiD S, et al. Metal-organic frameworks for separation[J]. Adv. Mater., 2018: 1705189.
19 AdilK, BelmabkhoutY, PillaiR S, et al. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship[J]. Chem. Soc. Rev., 2017, 46(11): 3402-3430.
20 AltintasC, AvciG, DaglarH, et al. Database for CO2 separation performances of MOFs based on computational materials screening[J]. ACS Appl. Mater. Interfaces, 2018, 10(20): 17257-17268.
21 WatanabeT, ShollD S. Accelerating applications of metal-organic frameworks for gas adsorption and separation by computational screening of materials[J]. Langmuir, 2012, 28(40): 14114-14128.
22 LiS, ChungY G, Snurr, R Q. High-throughput screening of metal-organic frameworks for CO2 capture in the presence of water[J]. Langmuir, 2016, 32(40): 10368-10376.
23 QiaoZ, PengC, ZhouJ, et al. High-throughput computational screening of 137953 metal-organic frameworks for membrane separation of a CO2/N2/CH4 mixture[J]. J. Mater. Chem. A, 2016, 4(41): 15904-15912.
24 ChenY, WangB, WangX Q, et al. A copper(Ⅱ)-paddlewheel metal-organic framework with exceptional hydrolytic stability and selective adsorption and detection ability of aniline in water[J]. ACS Appl. Mater. Interfaces, 2017, 9(32): 27027-27035.
25 KimH K, YunW S, KimM B, et al. A chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2[J]. J. Am. Chem. Soc., 2015, 137(31): 10009-10015.
26 LinX, TelepeniI, BlakeA J, et al. High capacity hydrogen adsorption in Cu(Ⅱ) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites[J]. J.Am. Chem. Soc., 2009, 131(6): 2159-2171.
27 ZhangC, Lan, Y S, GuoX Y, et al. Materials genomics-guided ab initio screening of MOFs with open copper sites for acetylene storage[J]. AIChE J., 2018, 64(4): 1389-1398.
28 ChenB L, XiangS C, QianG D. Metal-organic frameworks with functional pores for recognition of small molecules[J]. Accounts Chem. Res., 2010, 43(8): 1115-1124.
29 LiuX P, XiaoZ Y, XuJ. A NbO-type copper metal–organic framework decorated with carboxylate groups exhibiting highly selective CO2 adsorption and separation of organic dyes[J]. J.Mater. Chem. A, 2016, 4(36): 13844-13851.
30 WillemsT F, RycroftC H, KaziM, et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials[J]. Microporous Mesoporous Mater., 2012, 149(1): 134-141.
31 ZhangC, WangL, MaurinG, et al. In silico screening of MOFs with open copper sites for C2H2/CO2 separation[J]. AIChE J., 2018, 64(11): 4089-4096.
32 PotoffJ J, SiepmannJ I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen[J]. AIChE J., 2001, 47(7): 1676-1682.
33 HarrisJ G, YungK H. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. J. Phys. Chem., 1995, 99(31): 12021-12024.
34 RappeA K, CasewitC J, ColwellK S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. J. Am. Chem. Soc., 1992, 114(25): 10024-10035.
35 EwaldP P. Die Berechnung optischer und elektrostatischer Gitterpotentiale[J]. Ann. Phys., 1921, 396(3): 253-287.
36 VlugtT J H, Garcia-PerezE, DubbeldamD, et al. Computing the heat of adsorption using molecular simulations: the effect of strong coulombic interactions[J]. J. Chem. Theory Comput., 2008, 4(7): 1107-1118.
37 WellsB A, Bruin-DickasonC D, ChaffeeA L. Charge equilibration based on atomic ionization in metal-organic frameworks[J]. J. Phys. Chem. C, 2015, 119(1): 456-466.
38 BrenemanC M, WibergK B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis[J]. J. Comput. Chem., 1990, 11(3): 361-373.
39 QiaoZ, WangN, JiangJ, et al. Design of amine-functionalized metal-organic frameworks for CO2 separation: the more amine, the better? [J]. Chem. Commun., 2016, 52(5): 974-977.
40 ScottH S, ShivannaM, BajpaiA, et al. Highly selective separation of C2H2 from CO2 by a new dichromate-based hybrid ultramicroporous material[J]. ACS Appl. Mater. Interfaces, 2017, 9(39): 33395-33400.
41 ChowdhuryP, BikkinaC, MeisterD, et al. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes[J]. Microporous Mesoporous Mater., 2009, 117: 406-413.
42 LiB Y, ZhangZ J, LiY, et al. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework[J]. Angew. Chem. Int. Ed., 2012, 51(6): 1412-1415.
43 CaiJ F, Wang, H Z, WangH L, et al. An amino-decorated Nbo-type metal-organic framework for high C2H2 storage and selective CO2 capture[J]. RSC Adv., 2015, 5(94): 77417-77422.
44 SongC L, HeY B, LiB, et al. Enhanced CO2 sorption and selectivity by functionalization of a Nbo-type metal-organic framework with polarized benzothiadiazole moieties[J]. Chem. Commun., 2014, 50(81): 12105-12108.
45 LinL C, BergerA H, MartinR L, et al. In silico screening of carbon-capture materials[J]. Nat. Mater., 2012, 11(7): 633-641.
46 WuD, WangC C, LiuB, et al. Large-scale computational screening of metal-organic frameworks for CH4/H2 separation[J]. AIChE J., 2012, 58(7): 2078-2084.
47 BoldogI, BereciartuaP J, BulánekR, et al. 10-Vertex closo-carborane: a unique ligand platform for porous coordination polymers[J]. CrystEngComm, 2016, 18(12): 2036-2040.
48 PangJ D, LiuC P, HuangY G, et al. Visualizing the dynamics of temperature- and solvent-responsive soft crystals[J]. Angew. Chem. Int. Ed., 2016, 55(26): 7478-7482.
49 WuH, SimmonsJ M, SrinivasG, et al. Adsorption sites and binding nature of CO2 in prototypical metal-organic frameworks: a combined neutron diffraction and first-principles study[J]. J. Phys. Chem. Lett., 2010, 1(13): 1946-1951.
50 ChenK J, MaddenD G, PhamT, et al. Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2[J]. Angew. Chem. Int. Ed., 2016, 55(35): 10268-10272.
51 HuangS L, WengL H, JinG X. Bottom-up synthesis of coordination polymers based on carborane backbones and Cu2(CO2)4 paddle-wheel: ligand metathesis with metallotecons[J]. Dalton Trans., 2012, 41(38): 11657-11662.
[1] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[2] 曾昭文, 郑成, 毛桃嫣, 魏渊, 肖润辉, 彭思玉. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(S1): 1-14.
[3] 徐胜, 刘玲利, 曹锰, 张尚玺, 戴欣, 柳阳, 王振希. PVA/ZnO复合材料“骨架支撑”型孔道构建及铅离子吸附[J]. 化工学报, 2019, 70(S1): 130-140.
[4] 王红斌, 彭佳杰, 孙海权, 潘权稳, 王如竹, 王海亮, 徐兆宏. 硅胶-水吸附式冷风机组的设计及性能实验[J]. 化工学报, 2019, 70(S1): 186-192.
[5] 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831.
[6] 刘亚敏, 彭蕾, 苏凤英, 王湘湘, 黄艺真, 林在春, 喻晓静, 裴义山. 多孔胺基化氧化石墨烯基材料对CO2的吸附性能研究[J]. 化工学报, 2019, 70(5): 2016-2024.
[7] 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
[8] 安东海, 韩晓林, 程星星, 周滨选, 郑瑛, 董勇. 不同烟气组分对粉状活性焦吸附汞的影响机理[J]. 化工学报, 2019, 70(4): 1575-1582.
[9] 林茂, 李伙生, 张高生, 张平, 龙建友, 肖唐付, 张鸿郭, 熊静芳, 陈永亨. 铁酸镍基水热炭协同次氯酸根氧化去除废水中铊[J]. 化工学报, 2019, 70(4): 1591-1604.
[10] 张千, 刘向阳, 陈旺, 吴恒, 肖芃颖, 吉芳英, 李宸, 念海明. 新型除磷填料的制备及除磷吸附床运行参数的优化[J]. 化工学报, 2019, 70(3): 1099-1110.
[11] 李晓航, 刘芸, 苏银皎, 滕阳, 关彦军, 张锴. 煤粉炉和循环流化床锅炉飞灰特性对其汞吸附能力的影响[J]. 化工学报, 2019, 70(3): 1075-1082.
[12] 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
[13] 曾少娟, 尚大伟, 余敏, 陈昊, 董海峰, 张香平. 离子液体在氨气分离回收中的应用及展望[J]. 化工学报, 2019, 70(3): 791-800.
[14] 李龙, 葛天舒, 吴宣楠, 代彦军. 硅胶嵌入多孔纸基对苯蒸气吸附性能[J]. 化工学报, 2019, 70(3): 951-959.
[15] 周钰寒, 陈晓玉, 左成, 郭庆杰, 赵军. 废纸纤维素/SiO2复合气凝胶的性能[J]. 化工学报, 2019, 70(3): 1120-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .