化工学报 ›› 2019, Vol. 70 ›› Issue (2): 525-532.doi: 10.11949/j.issn.0438-1157.20181068

• 过程系统工程 • 上一篇    下一篇

基于分子动力学的橡胶聚合物计算机辅助设计方法

梁馨元(),张磊(),刘琳琳,都健   

  1. 大连理工大学化工学院,化工系统工程研究所,辽宁 大连 116024
  • 收稿日期:2018-09-25 修回日期:2018-10-22 出版日期:2019-02-05 发布日期:2018-10-29
  • 通讯作者: 张磊 E-mail:709435183@qq.com;keleiz@dlut.edu.cn
  • 作者简介:<named-content content-type="corresp-name">梁馨元</named-content>(1993—),女,硕士研究生,<email>709435183@qq.com</email>|张磊(1986—),男,博士,副教授,<email>keleiz@dlut.edu.cn</email>
  • 基金资助:
    国家自然科学基金项目(21808025, 21776035, 21576036);中央高校基本科研业务费专项资金(DUT17RC(3)008)

Study on rubber polymer using computer-aided molecular design method based on molecular dynamics

Xinyuan LIANG(),Lei ZHANG(),Linlin LIU,Jian DU   

  1. Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2018-09-25 Revised:2018-10-22 Online:2019-02-05 Published:2018-10-29
  • Contact: Lei ZHANG E-mail:709435183@qq.com;keleiz@dlut.edu.cn

摘要:

聚合物分子设计的关键步骤是得到能够满足多种性质要求的重复单元结构。作为化学产品工程中的新型发展手段,计算机辅助分子设计(CAMD)技术可以通过基团贡献法生成满足约束条件的聚合物重复单元结构,分子动力学(MD)技术则可以在微观层面上进行计算机实验模拟系统性质。建立了聚合物的CAMD-MD通用设计方法,并进行轮胎橡胶聚合物的分子设计,首先基于基团贡献法进行重复单元的设计;其次,利用层次分析法确定多性质权重排名,并基于分子动力学方法探究候选结构的性质;最后将方法应用于实际橡胶结构中,模拟得到聚能密度、密度、玻璃化转换温度和热导率性质,验证了方法的可行性。

关键词: 产品设计, 计算机模拟, 分子模拟, 聚合物

Abstract:

A key step in the design of polymer molecules is to obtain repeating unit structures that meet a variety of properties. As a new developing method in chemical engineering, computer-aided molecular design (CAMD) technique can generate the repeat unit structures which satisfy the constraints using group contribution method, molecular dynamics (MD) technique can be used to simulate computer experiments to acquire systems properties at the micro level. This paper establishes a general CAMD-MD method to design polymers. First, repeat unit structures are identified based on group contribution method. Second, the weight of properties is determined respectively by using the analytic hierarchy process and properties of candidate structures are simulated based on molecular dynamics method. The CAMD-MD method is finally applied to the actual rubber structure, and the properties such as cohesive energy density, density, glass transition temperature and thermal conductivity are simulated to verify the feasibility of the method.

Key words: product design, computer simulation, molecular simulation, polymers

中图分类号: 

  • TQ 317.5

图1

分子动力学模拟基本原理"

表1

重复单元结果"

Property constraintsLower limitUpper limit

CED/MPa

Tg/K

thermal conductivity/(W·m-1·K-1)

density/(kg·m-3)

0.11

0.7

330

235

1.4

Repeat unit structuresCED /MPaTg/KThermal conductivity/(W·m-1·K-1)Density/(kg·m-3)

-[-CH2-]n-

-[-(CH2)6-CH?CF-]n-

-[-(CH2)5-CH?CF-]n-

-[-(CH2)4-CH?CF-]n-

-[-(CH2)6-CH?CH-]n-

-[-(CH2)5-CH?CH-]n-

-[-(CH2)6-CH?C(CH3)-]n-

-[-(CH2)-CH?CH-(CH2)-]n-

264.82

309.32

316.79

327.27

285.57

288.73

281.54

308.81

168.34

173.77

174.44

175.29

182.79

184.90

188.78

197.79

0.1250

0.1645

0.1717

0.1820

0.1234

0.1231

0.1281

0.1210

0.8328

1.093

1.137

1.198

0.8640

0.8688

0.8734

0.8990

图2

无定形顺丁橡胶分子"

图3

LAMMPS初始体系"

表2

弛豫过程"

StageEnsemble

Pressure/

MPa

Temperature/

K

Time step/fsNumber of stepsRun time/ps

1

2

3

4

5

6

NVT

NPT

NPT

NPT

NPT

NPT

0.1

0.1

0.1

0.1

0.1

300

300—600

600

600—100

100—300

300

1

1

1

1

1

1

300000

200000

600000

250000

300000

500000

300

200

600

250

500

500

图4

弛豫过程密度-温度关系"

图5

模拟顺丁橡胶系统的密度-温度关系"

图6

体系分块"

图7

计算热导率"

符号说明"

A——系统在垂直于传导方向的横截面积
ai(t)——原子it时刻的加速度
Ci, Dj, Ek——分别为第一、二、三级基团贡献值
Fi(t)——原子it时刻所受的力
J——热通量, W·m-2
Ni, Mj, Ok——分别为第一、二、三级基团分别出现的次数
ni——第i种基团在重复单元中出现次数
nj——第j种基团在重复单元中出现次数
P(ni)——聚合物性质预测值
Pl——性质约束下限
Pu——性质约束上限
dT/dx——温度梯度, K·m-1
vi(t)——原子it时刻的速度矢量
vj——j基团的化合价
κ——热导率, W·m-1·K-1
1 FungK Y, NgK M, ZhangL, et al. A grand model for chemical product design[J]. Computers & Chemical Engineering, 2016, 91: 15-27.
2 钱宇, 潘吉铮, 江燕斌, 等. 化学产品工程的理论和技术[J]. 化工进展, 2003, 22(3): 217-223.
QianY, PanJ Z, JiangY B, et al. The theory and technology of chemical product engineering[J]. Chemical Industry and Engineering Progress, 2003, 22(3): 217-223.
3 GaniR, NgK M. Product design — molecules, devices, functional products, and formulated products[J]. Computers & Chemical Engineering, 2015, 81: 70-79.
4 HarperP M, GaniR. A multi-step and multi-level approach for computer aided molecular design[J]. Computers & Chemical Engineering, 2000, 24(2): 677-683.
5 GaniR, NielsenB, FredenslundA. A group contribution approach to computer-aided molecular design[J]. AIChE Journal, 1991, 37(9): 1318-1332.
6 JobackK G, ReidR C. Estimation of pure-component properties from group-contributions[J]. Chemical Engineering Communications, 1987, 57(1-6): 233-243.
7 LymanW J, ReehlW F, RosenblattD H. Handbook of Chemical Property Estimation Methods[M]. Washington DC: American Chemical Society, 1990: 250.
8 ConteE, GaniR, NgK M. Design of formulated products: a systematic methodology[J]. AIChE Journal, 2011, 57: 2431-2449.
9 ConteE, GaniR, ChengY S, et al. Design of formulated products: experimental component[J]. AIChE Journal, 2012, 58: 173-189.
10 MatteiM, KontogeorgisG M, GaniR. A comprehensive framework for surfactant selection and design for emulsion based chemical product design[J]. Fluid Phase Equilib., 2014, 362: 288-299.
11 MartínM, MartínezA. A methodology for simultaneous process and product design in the formulated consumer products industry: the case study of the detergent business[J]. Chem. Eng. Res. Des., 2013, 91(5): 795-809.
12 BernardoF P, SaraivaP M. A conceptual model for chemical product design[J]. AIChE Journal, 2015, 61: 802-815.
13 LiuQ, ZhangL, LiuL, et al. GC-COSMO based reaction solvent design with new kinetic model using CAMD[J]. Computer Aided Chemical Engineering, 2018, 44: 235-240.
14 ZhangL, CignittiS, GaniR. Generic mathematical programming formulation and solution for computer-aided molecular design[J]. Computers & Chemical Engineering, 2015, 78:79-84.
15 ZhangL, BabiD K, GaniR. New vistas in chemical product and process design[J]. Annu. Rev. Chem. Biomol. Eng., 2016, 7 (1): 557-582.
16 YunusN A, GernaeyK V, WoodleyJ M, et al. A systematic methodology for design of tailor-made blended products[J]. Computers & Chemical Engineering, 2014, 66(10): 201-213.
17 ChongF K, EljackF T, AtilhanM, et al. Ionic liquid design for enhanced carbon dioxide capture — a computer aided molecular design approach[J]. Chem. Eng. Trans., 2014, 39: 253-258.
18 KarunanithiA T, MehrkeshA. Computer-aided design of tailor-made ionic liquids[J]. AIChE Journal, 2013, 59(12): 4627-4640.
19 CharpentierJ C. The necessary multiscale and multidisciplinary approach for product-process innovation[C]//DTU-KT Seminar 2007 Lyngby. Denmark, 2017.
20 VaidyanathanR, El-HalwagiM M. Computer-aided synthesis of polymers and blends with target properties[J]. Industrial & Engineering Chemistry Research, 1996, 35(2): 627-634.
21 CamardaK V, MaranasC D. Optimization in polymer design using connectivity indices[J]. Industrial & Engineering Chemistry Research, 1999, 38(5): 1884-1892.
22 SatyanarayanaK C, AbildskovJ, GaniR. Computer-aided polymer design using group contribution plus property models[J]. Computers & Chemical Engineering, 2009, 33(5): 1004-1013.
23 SatyanarayanaK C, AbildskovJ, GaniR, et al. Computer aided polymer design using multi-scale modelling[J]. Brazilian Journal of Chemical Engineering, 2010, 27(3): 369-380.
24 MarreroJ, GaniR. Group-contribution based estimation of pure component properties[J]. Fluid Phase Equilibria, 2001, 183, (1): 183-208.
25 SaatyT L. Decision making with analytic hierarchy process[J]. International Journal of Services Sciences, 2008, 1(1): 83-98.
26 ChuriN, AchenieL E. Novel mathematical programming model for computer aided molecular design[J]. Ind. Eng. Chem. Res., 1996, 35(10): 3788-94.
27 马群锋. 晶态非极性聚合物内聚能密度的估算[J]. 高分子通报, 2011, 7: 103-106.
MaQ F. Estimation of cohesive energy density of crystalline nonpolar polymer[J]. Chinese Polymer Bulletin, 2011, 7: 103-106.
28 AshbyM F. On the engineering properties of materials[J]. Acta Metallurgica, 1989, 37(5): 1273.
29 MarkJ E. Polymer Data Handbook[M]. Oxford: Oxford University Press, 1999.
30 JundP, JullienR. Molecular-dynamics calculation of the thermal conductivity of vitreous silica[J]. Physical Review B, 1999, 59:137.
[1] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[2] 亢银虎, 张朋远, 刘葱葱, 马江泽, 卢啸风. 基于化学爆炸模式分析方法的乙烯对冲扩散火焰熄火机理[J]. 化工学报, 2019, 70(4): 1644-1651.
[3] 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
[4] 周强, 郝军正, 祝琳华, 王红, 司甜, 何艳萍, 孙彦琳. 泡沫相相分离制备多孔聚合物微球连续化工艺[J]. 化工学报, 2019, 70(3): 1208-1219.
[5] 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
[6] 刘小芳, 郭海燕, 张胜男, 黄靓. 聚糖菌反硝化影响因素及内碳源转化特性[J]. 化工学报, 2019, 70(3): 1127-1134.
[7] 郭婉婉, 李如月, 黄军. 交联菲罗啉负载铜催化剂用于合成三甲基苯醌[J]. 化工学报, 2019, 70(3): 929-936.
[8] 吉文鹏, 杨慧中. 基于改进扩张搜索聚类算法的多流形软测量建模[J]. 化工学报, 2019, 70(2): 723-729.
[9] 蔡惊涛, 李代禧, 刘宝林, 栾翰森, 郭柏松, 魏冬青, 王浩. 尿素(520)晶面可控结晶的分子动力学模拟[J]. 化工学报, 2019, 70(1): 128-135.
[10] 陈政, 王莉, 周健. 双响应性嵌段聚合物的纳米孔开关效应的计算机模拟[J]. 化工学报, 2019, 70(1): 271-279.
[11] 谢静, 徐明益, 班帅, 孙晖, 周红军. 天然气内重整和外重整下SOFC多场耦合三维模拟分析[J]. 化工学报, 2019, 70(1): 214-226.
[12] 向文军, 朱朝菊, 刘丹, 周绿山. 分子动力学模拟研究两亲聚合物与疏水纳米粒子自组装核-壳结构[J]. 化工学报, 2019, 70(1): 345-354.
[13] 王鑫, 杨斌鑫. 耦合格子Boltzmann的聚合物结晶相场方法[J]. 化工学报, 2018, 69(S2): 193-199.
[14] 丁屹, 丁国良, 庄大伟. 排汗冷却材料用于人体舒适度调节的技术原理及进展[J]. 化工学报, 2018, 69(S2): 9-16.
[15] 房萍, 陈煜. LNG燃料汽车储罐自增压系统仿真计算与分析[J]. 化工学报, 2018, 69(S2): 309-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .