化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1788-1794.doi: 10.11949/j.issn.0438-1157.20181058

• 催化、动力学与反应器 • 上一篇    下一篇

钙催化苯酚反应的分子动力学模拟

洪迪昆(),操政,杨昌敏,刘亮,郭欣()   

  1. 华中科技大学煤燃烧国家重点实验室,湖北 武汉 430074
  • 收稿日期:2018-09-25 修回日期:2019-03-05 出版日期:2019-05-05 发布日期:2019-05-10
  • 通讯作者: 郭欣 E-mail:hongdikun@mail.hust.edu.cn;guoxin@mail.hust.edu.cn
  • 作者简介:<named-content content-type="corresp-name">洪迪昆</named-content>(1991—),男,博士研究生,<email>hongdikun@mail.hust.edu.cn</email>|郭欣(1970—),女,博士,教授,<email>guoxin@mail.hust.edu.cn</email>
  • 基金资助:
    国家自然科学基金项目(51876073)

Catalytic effect of calcium on reaction of phenol using reactive molecular dynamics simulation

Dikun HONG(),Zheng CAO,Changmin YANG,Liang LIU,Xin GUO()   

  1. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2018-09-25 Revised:2019-03-05 Online:2019-05-05 Published:2019-05-10
  • Contact: Xin GUO E-mail:hongdikun@mail.hust.edu.cn;guoxin@mail.hust.edu.cn

摘要:

钙催化煤热解焦油二次反应的过程较为复杂,通过实验研究手段难以深入探究其机理。采用基于反应力场的分子动力学模拟方法研究了钙对焦油模型化合物苯酚反应的影响。结果表明,钙提高了苯酚的反应速率,促进了苯酚向气体产物、重质焦油和焦炭产物转化。在较低温度下,没有发现与气体产物键结的钙,钙主要迁移转化到重质焦油和焦炭产物中,促进了苯酚的缩聚反应。在较高温度下,有大量的钙与气体产物键结,促进了苯酚的裂解反应,提高了H2的生成量,但对CO的生成几乎没有影响。根据一级反应动力学模型,钙对苯酚裂解反应的活化能影响较小,但显著降低了苯酚缩聚反应的活化能。

关键词: 热解, 苯酚, 催化, ReaxFF, 动力学

Abstract:

The process of calcium-catalyzed secondary reaction of coal pyrolysis tar is complicated, and it is difficult to deeply explore its mechanism through experimental research methods. The effect of calcium on the reaction of phenol (tar model compound) was studied using ReaxFF molecular dynamics simulations. The results showed that calcium promoted the reaction rate of phenol, and promoted the conversion of phenol to gaseous, heavy tar and coke products. At low temperatures, very little amounts of gas-Ca were observed. Ca was mainly involved in a repeated bond-breaking and bond-forming process between tar and coke. Ca species only promoted the polymerization of phenol at the low temperatures. While at high temperatures, a large amount of Ca was released in the form of gas-Ca, promoting the cracking of phenol. Ca promoted the production of H2, but had little effect on the production of CO. The activation energies for the polymerization and cracking of phenol are determined to be 52.96 kcal/mol and 16.08 kcal/mol in the absence of Ca, compared to 37.33 kcal/mol and 13.34 kcal/mol in the presence of Ca. This means that the role of Ca in reducing the activation energy for phenol polymerization is much more significant than that for phenol cracking reactions.

Key words: pyrolysis, phenol, catalytic, ReaxFF, kinetics

中图分类号: 

  • TQ 530.2

图1

苯酚反应体系模型"

图2

不同温度下苯酚分子数目随反应时间的变化(实心:含钙苯酚体系;空心:纯苯酚体系)"

图3

不同温度下苯酚反应产物的分布(实心:纯苯酚体系;空心:含钙苯酚体系)"

图4

3000 K温度下H2、CO和H2O分子数目随反应时间的变化"

图5

2000 K和3000 K温度下不同种类钙的含量随反应时间的变化"

图6

不同温度下C0-4和C12+产物含量随反应时间的变化"

图7

苯酚裂解和缩聚反应的动力学拟合"

1 关珺, 何德民, 张秋民 . 褐煤热解提质技术与多联产构想[J]. 煤化工, 2011, 39(6): 1-4.
Guan J , He D M , Zhang Q M . The technology of improving lignite quality through pyrolysis and the concept of poly-generation[J]. Coal Chemical Industry, 2011, 39(6): 1-4.
2 冯冬冬, 赵义军, 唐文博, 等 . 热解温度及AAEM元素对生物质快速热解焦油的影响[J]. 化工学报, 2016, 67(6): 2558-2567.
Feng D D , Zhao Y J , Tang W B , et al . Effect of temperature and AAEM species on fast pyrolysis of biomass tar[J].CIESC Journal, 2016, 67(6): 2558-2567.
3 Li X , Wu H , Hayashi J I , et al . Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal(Ⅵ): Further investigation into the effects of volatile-char interactions[J]. Fuel, 2004, 83(10): 1273-1279.
4 樊文克, 崔童敏, 李宏俊, 等 . 碱金属碱土金属对神府煤焦气化活性的影响[J]. 燃料化学学报, 2016, 44(8): 897-903.
Fan W K , Cui T M , Li H J , et al . Effect of AAEM on gasification reactivity of Shenfu char[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 897-903.
5 熊杰, 周志杰, 许慎启, 等 . 碱金属对煤热解和气化反应速率的影响[J]. 化工学报, 2011, 62(1): 192-198.
Xiong J , Zhou Z J , Xu S Q , et al . Effect of alkali metal on rate of coal pyrolysis and gasification[J]. CIESC Journal, 2011, 62(1): 192-198.
6 刘振宇, 王仁醒, 纪雷鸣, 等 . 钙化合物在煤热解过程中的作用[J]. 北京化工大学学报(自然科学版), 2015, 42(4): 1-9
Liu Z Y , Wang R X , Ji L M , et al . Effect of calcium compounds on pyrolysis of coals[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2015, 42(4): 1-9
7 黄小河, 张守玉, 杨靖宁, 等 . 准东煤高温燃烧过程中含钙矿物质的转化规律[J]. 化工学报, 2017, 68(10): 3906-3911.
Huang X H , Zhang S Y , Yang J N , et al . Calcium transformation during Zhundong coal combustion process[J]. CIESC Journal, 2017, 68(10): 3906-3911.
8 Lin S Y , Harada M , Suzuki Y , et al . Comparison of pyrolysis products between coal, coal/CaO, and coal/Ca(OH)2 materials[J]. Energy Fuels, 2003, 17(3): 602-607.
9 Zhu T , Zhang S , Huang J , et al . Effect of calcium oxide on pyrolysis of coal in a fluidized bed[J]. Fuel Processing Technology, 2000, 64(1): 271-284.
10 Jia Y , Huang J , Wang Y . Effects of calcium oxide on the cracking of coal tar in the freeboard of a fluidized bed[J]. Energy & Fuels, 2004, 18(6): 1625-1632.
11 杨靖宁, 张守玉, 姚云隆, 等 . 高温热解过程中新疆高碱煤中钙的演变[J]. 煤炭学报, 2016, 41(10): 2555-2559.
Yang J N , Zhang S Y , Yao Y L , et al . Calcium transformation during the high-temperature pyrolysis process of high-alkali coal from Xinjiang[J]. Journal of China Coal Society, 2016, 41(10): 2555-2559.
12 van Duin Adri C T , Dasgupta S , Lorant F , et al . ReaxFF: a reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41): 9396-9409.
13 Zhang J , Weng X , Han Y , et al . The effect of supercritical water on coal pyrolysis and hydrogen production: a combined ReaxFF and DFT study[J]. Fuel, 2013, 108(11): 682-690.
14 Zheng M , Li X , Liu J , et al . Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics[J]. Energy & Fuels, 2013, 27(6): 2942-2951.
15 Zheng M , Li X , Liu J , et al . Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis[J]. Energy & Fuels, 2014, 28(1): 522-534.
16 Bhoi S , Banerjee T , Mohanty K . Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF[J]. Fuel, 2014, 136(6): 326-333.
17 Wang H , Feng Y , Zhang X , et al . Study of coal hydropyrolysis and desulfurization by ReaxFF molecular dynamics simulation[J]. Fuel, 2015, 145(4): 241-248.
18 Zheng M , Li X , Nie F , et al . Investigation of overall pyrolysis stages for Liulin bituminous coal by large-scale ReaxFF molecular dynamics[J]. Energy & Fuels, 2017, 31(4): 3675-3683.
19 高宁, 王一超, 刘育红 . 丙炔基双酚A醚硼聚合物热解过程的ReaxFF分子动力学模拟[J]. 化工学报, 2015, 66(4): 1557-1564.
Gao N , Wang Y C , Liu Y H . Molecular dynamics simulations of thermal pyrolysis of novel dipropargyl ether of bisphenol A based boron-containing polymer[J]. CIESC Journal, 2015, 66(4): 1557-1564.
20 Hong D K , Guo X . Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel, 2017, 210(12): 58-66.
21 Bai Y , Yan L , Li G , et al . Effects of demineralization on phenols distribution and formation during coal pyrolysis[J]. Fuel, 2014, 134(9): 368-374.
22 洪迪昆, 刘亮, 郭欣 . 温度对聚丙烯酰胺稀溶液黏度影响的分子动力学模拟[J]. 中国电机工程学报, 2015, 35(23): 6099-6104.
Hong D K , Liu L , Guo X . Molecular dynamics simulation of temperature impact on the viscosity of polyacrylamide dilute solution[J]. Proceedings of the CSEE, 2015, 35(23): 6099-6104.
23 Qi X J , Guo X , Zheng C G . Density functional study the interaction of oxygen molecule with defect sites of grapheme[J]. Applied Surface Science, 2012, 259(259): 195-200.
24 Thompson P A , Robbins M O . Shear flow near solids: epitaxial order and flow boundary conditions[J]. Physical Review A, 1990, 41(12): 6830-6837.
25 Berendsen H , Postma J , Gunsteren W , et al . Molecular dynamics with coupling to an external bath[J]. Journal of Chemical Physics, 1984, 81(8): 3684-3690.
26 Cheng X M , Wang Q D , Li J Q , et al . ReaxFF molecular dynamics simulations of oxidation of toluene at high temperatures[J]. Journal of Physical Chemistry A, 2012, 116(40): 9811.
27 Lummen N . ReaxFF-molecular dynamics simulations of non-oxidative and non-catalyzed thermal decomposition of methane at high temperatures[J]. Physical Chemistry Chemical Physics, 2010, 12(28): 7883-7893.
28 Ashraf C , van Duin Adri C T . Extension of the ReaxFF combustion force field toward syngas combustion and initial oxidation kinetics[J]. Journal of Physical Chemistry A, 2017, 121(5): 1051.
29 Mao Q , van Duin Adri C T , Luo K H . Investigation of methane oxidation by palladium-based catalyst via ReaxFF molecular dynamics simulation[J]. Proceedings of the Combustion Institute, 2016, 36(3): 4339-4346.
30 Roets L , Bunt J R , Neomagus H , et al . The effect of added minerals on the pyrolysis products derived from a vitrinite-rich demineralised South African coal[J]. Journal of Analytical & Applied Pyrolysis, 2016, 121(12): 41-49.
31 Castro-marcano F , van Duin Adri C T , Mathews J P , et al . Pyrolysis of a large-scale molecular model for Illinois no. 6 coal using the ReaxFF reactive force field[J]. Journal of Analytical & Applied Pyrolysis, 2014, 109(12): 79-89.
[1] 商辉, 丁禹, 张文慧. 微波法制备生物柴油研究进展[J]. 化工学报, 2019, 70(S1): 15-22.
[2] 孟繁锐, 李伯阳, 李先春, 邱爽. K2CO3对兰炭催化气化特性的影响[J]. 化工学报, 2019, 70(S1): 99-109.
[3] 曾育才, 刘小玲, 梁奇峰, 吕鉴泉. 微波促进碳酸钾催化一锅法合成2-氨基-3氰基-4-芳基-4H-苯并色烯衍生物[J]. 化工学报, 2019, 70(S1): 110-114.
[4] 王超前, 王文龙, 李哲, 孙静, 宋占龙, 赵希强, 毛岩鹏. 基于微波诱导定向加热的污泥新型热解方法能耗分析[J]. 化工学报, 2019, 70(S1): 168-176.
[5] 谢昭明, 邓容锐, 刘作华, 邓丽, 李千文, 张柱, 殷兆迁, 陶长元. 钠化焙烧转炉钒渣粉体分形生长的演化行为[J]. 化工学报, 2019, 70(5): 1904-1912.
[6] 尚志新, 张香兰. γ-巯丙基三乙氧基硅烷水解程度对纳米二氧化硅接枝机理影响的DFT研究[J]. 化工学报, 2019, 70(5): 1663-1673.
[7] 闫景春, 沈来宏, 蒋守席, 葛晖骏. 高钠煤化学链燃烧特性及煤焦气化反应动力学研究[J]. 化工学报, 2019, 70(5): 1913-1922.
[8] 毛燕东, 李克忠, 刘雷, 辛峰. 添加剂对催化气化工艺中煤灰结渣性及气化性能影响研究[J]. 化工学报, 2019, 70(5): 1951-1963.
[9] 魏砾宏, 郭良振, 蒋进元, 刘美佳, 杨天华. Fe2O3对甘氨酸热解特性及氮转化的影响[J]. 化工学报, 2019, 70(5): 1942-1950.
[10] 宋宇淙, 丁晓墅, 闫亚辉, 王淑芳, 王延吉. 氧化石墨烯复合金属催化剂催化碳酸二甲酯合成反应性能[J]. 化工学报, 2019, 70(4): 1401-1408.
[11] 梁文胜, 刘江涛, 赵月, 黄伟, 左志军. NiO和Ni催化剂对苯甲酸热解机理的理论计算[J]. 化工学报, 2019, 70(4): 1429-1435.
[12] 苏银皎, 刘轩, 李丽锋, 李晓航, 姜平, 滕阳, 张锴. 三类煤阶煤中汞的赋存形态分布特征[J]. 化工学报, 2019, 70(4): 1559-1566.
[13] 陈宏霞, 孙源, 宫逸飞, 黄林滨. 单晶硅表面池沸腾可视化测量及数据分析[J]. 化工学报, 2019, 70(4): 1309-1317.
[14] 王鑫博, 张延平, 李秀萍, 赵荣祥. EMIES/nC9H10O2基低共熔溶剂的制备及其氧化脱硫活性的研究[J]. 化工学报, 2019, 70(4): 1567-1574.
[15] 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .