化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1302-1308.doi: 10.11949/j.issn.0438-1157.20181000

• 流体力学与传递现象 • 上一篇    下一篇

双开口气波制冷机振荡管内流动机理实验研究

王静娴1(),郑友林2,胡恒1,魏蓓2,李奇2,胡大鹏1()   

  1. 1. 大连理工大学化工机械与安全学院,辽宁 大连 116023
    2. 中国石化石油勘探开发研究院,北京 100083
  • 收稿日期:2018-09-10 修回日期:2018-12-24 出版日期:2019-04-05 发布日期:2019-01-04
  • 通讯作者: 胡大鹏 E-mail:dl_jingxian_wang@163.com;hudp@dlut.edu.cn
  • 作者简介:<named-content content-type="corresp-name">王静娴</named-content>(1988—),女,博士研究生,<email>dl_jingxian_wang@163.com</email>|胡大鹏(1963—),男,博士,教授,<email>hudp@dlut.edu.cn</email>
  • 基金资助:
    国家自然科学基金项目(21476036);国家科技重大专项(2016ZX0566005-002)

Experimental research on flow mechanism analysis in oscillating tube of double-opening wave refrigerator

Jingxian WANG1(),Youlin ZHENG2,Heng HU1,Bei WEI2,Qi LI2,Dapeng HU1()   

  1. 1. School of Chemical Machinery and Safety, Dalian University of Technology, Dalian 116023, Liaoning, China
    2. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China
  • Received:2018-09-10 Revised:2018-12-24 Online:2019-04-05 Published:2019-01-04
  • Contact: Dapeng HU E-mail:dl_jingxian_wang@163.com;hudp@dlut.edu.cn

摘要:

搭建了双开口制冷整机实验平台,采集不同转速下振荡管内动态压力,对气波制冷整机内部波系关系对制冷的影响进行机理研究。首先,应用基于CFD的数值计算方法对本实验进行模拟,验证了该计算方法具有较高精度;其次,根据不同转速下管内实测压力绘制波系关系图,得到在最大制冷温降时,反向压缩波最弱,波系匹配最为合理;最后,分析压缩波振荡现象的原因及影响,转速越接近最佳转速,压缩波携带能量越小,对低温气影响越少。

关键词: 制冷, 测量, 实验验证, 非定常流动, 数值模拟

Abstract:

A double-opening refrigeration machine experimental platform was built to collect the dynamic pressure in the oscillating tube at different speeds, and the mechanism of the internal wave relationship of the gas-wave-cooling machine was studied. First, the experiment is simulated by a CFD (computational fluid dynamics) numerical simulation method, the simulated value agree fairly well with the experiment pressure data, which has proven that this simulation method has a high precision. Then,the flow waves diagrams under different rotation rate were plotted based on the experiment pressure data. It shows that when the temperature gap between high pressure gas and low temperature gas reaches maximum, reflect shock wave intensity is the lowest and the relation between waves is most reasonable. Finally, the compression wave oscillation phenomenon is analyzed, which comes to a conclusion that the oscillation increases low temperature gas temperature. When the rotation rate approaches the best optimal value, the weaker the wave energy is and the less its impact is.

Key words: refrigeration, measurement, experimental validation, unsteady flow, numerical simulation

中图分类号: 

  • TQ 051.5

图1

双开口制冷机结构"

图2

新型双开口制冷机结构"

表1

设备设计参数"

参数 数值
通道长度 300 mm
通道高度 18 mm
通道数量 72
转子半径 125 mm
转速 ≤2800 r/min
间隙尺寸 ≤0.2 mm
HP与LT喷嘴偏角 2.5°~22.5°

图3

检测孔开设位置"

图4

重复性实验压力数据"

表2

四端口温度"

端口 实验次数
1 2 3 4 5
HP-port 23.6 23.6 23.8 23.7 24.1
LT-port 6.3 6.2 6.5 6.4 6.5
HT-port 58.8 59.0 60.3 60.2 60.5
MP-port 19.6 19.2 19.4 19.4 19.3

图5

稳定性实验压力数据"

表3

边界条件的参数设置"

端口 表压/kPa 温度/℃
HP 80 26.8
HT 30 60.8
LT 0.457 7.3

图6

实验动态压力与数值计算表压"

图7

不同转速下制冷温降"

图8

不同转速下x-t-p图"

图9

不同转速下位置No.6处压力"

1 Pezhman A , Norbert M . Wave rotor research program at Michigan state university[C]// 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Tucson, Arizona, USA: American Institute of Aeronautics and Astronautics, 2005: 3844-3859.
2 Kentfield J . Wave rotor and highlights of their development[C]// 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Cleveland, Ohio, USA: American Institute of Aeronautics and Astronautics, 1988: 13-15.
3 于洋, 刘培启, 王云磊, 等 . 高效气波冷凝装置流动及热力学特性[J]. 化工学报, 2017, 68(7): 3039-3048.
Yu Y , Liu P Q , Wang Y L , et al . Flow and thermodynamic properties of efficient gas wave refrigeration plant[J]. CIESC Journal, 2017, 68(7): 3039-3048.
4 代玉强 . 外循环耗散式气波制冷机理分析与实验研究[D]. 大连: 大连理工大学, 2010.
Dai Y Q . Principle study and experimental investigation of gas waves refrigeration by aggregated thermal dissipation[D]. Dalian: Dalian University of Technology, 2010.
5 Dai Y Q , Liu F X , Wu J T , et al . Influence of skewing of contact face on performance of wave rotor refrigerators and superchargers[C]// The ASME 2013 International Mechanical Engineering Congress and Exposition. San Diego, California, USA: ASME, 2013: 63449.
6 Dai Y Q , Liu P Q , Wu J T , et al . Unsteady behavior of real gas in wave rotor refrigerators[J]. Advanced Materials Research, 2011, 236/237/238: 1516-1522.
7 Hu D P , Li R F , Liu P Q , et al . The design and influence if port arrangement in an improved wave rotor refrigerator performance[J]. Applied Thermal Engineering, 2016, 107: 207-217.
8 赵家权 . 振荡管内激波增压特性强化气波制冷性能研究[D]. 大连: 大连理工大学, 2013.
Zhao J Q . Studying on gas wave refrigeration enhancement by the pressurize characteristics of shock wave in oscillation tube[D]. Dalian: Dalian University of Technology, 2013.
9 Zhao J Q , Hu D P . An improved wave rotor refrigerator using an outside gas flow for recycling the expansion work[J]. Shock Waves, 2017, 27(2): 325-332.
10 Hu D P , Yu Y , Liu P Q . Enhancement of refrigeration performance by energy transfer of shock wave[J]. Applied Thermal Engineering, 2017, 130: 309-318.
11 于洋 . 激波传递能量强化双开口振荡管制冷性能研究[D]. 大连: 大连理工大学, 2018.
Yu Y . Enhancement of refrigeration performance by shock-wave transmission energy in double-opening oscillating tube[D]. Dalian: Dalian University of Technology, 2018.
12 丁美霞 . 径流式气波制冷机性能参数研究[D]. 大连: 大连理工大学, 2007.
Ding M X . Influent of parameters on the performance of pressure exchanging refrigerator[D]. Dalian: Dalian University of Technology, 2007.
13 Liu P Q , Zhu Y , Hu D P , et al . Investigation and optimization of wave motion behavior in pressure oscillation tube[J]. Experimental Thermal and Fluid Science, 2013, 50: 193-200.
14 陈铭诤, 吴文 . 气波机一维非定常定熵流动图解法[J]. 力学情报, 1973, 6: 3-20.
Chen M Z , Wu W . Diagrammatic method of one dimensional unsteady entropy flow for gas-wave machine[J]. Intelligence of Mechanics, 1973, 6: 3-20.
15 Chan S N , Liu H X , Hu X Y . Wave system analyses of four-port through-flow wave rotor[J]. Journal of Aerospace Power, 2013, 28(2): 410-417 .
16 Gilberto M , Mark S . Preliminary design of a double expansion through flow wave rotor: thermal and gas dynamic analysis[C]// Turbine Technical Conference and Exposition of ASME Turbo Expo 2013. San Antonio, Texas, USA: International Gas Turbine Institute, 2013: T37A026.
17 Daniel W . A general numerical model for wave-rotor analysis [C]//NASA Technical Memorandum 105740. Cleveland, Ohio, USA: NASA Lewis Research Center, 1992: 92N31484.
18 Fatsis A , Lafond A , Ribaud Y . Preliminary analysis of the flow inside a three-port wave rotor by means of a numerical model[J]. Aerospace Science and Technology, 1998, 2(5): 289-300.
19 刘培启, 徐思远, 王泽武, 等 . 偏角对气波制冷机制冷效率的影响及预测[J]. 化工学报, 2014, 65(11): 4271-4277.
Liu P Q , Xu S Y , Wang Z W , et al . Influence of offset angle on refrigeration efficiency of gas wave refrigerator and prediction for optimal offset angle[J]. CIESC Journal, 2014, 65(11): 4271-4277.
20 Okamoto K , Nagashima T . Simple numerical modeling for gas dynamic design of wave rotors[J]. Journal of Propulsion and Power, 2007, 23(1): 99-107.
21 Edwin L R J , Mocsari J C , Nalim M R . Analytic methods for design of eave cycle rotor for wave rotor core engine[C]// AIAA 29th Joint Propulsion Conference and Exhibit. Monterey, CA: The American Institute of Aeronautics and Astronautics, 1993: 1-12.
22 赵家权, 刘培启, 赵文静, 等 . 激波管中非定常凝结现象的数值分析[J]. 化工学报, 2012, 63(4): 1050-1055.
Zhao J Q , Liu P Q , Zhao W J , et al . Numerical analysis of unsteady condensation during expansion in shock tube[J]. CIESC Journal, 2012, 63(4): 1050-1055.
23 赵文静, 胡大鹏, 刘培启, 等 . 端口夹角对气波引射器性能的影响和预测[J]. 化工学报, 2012, 63(2): 573-577.
Zhao W J , Hu D P , Liu P Q , et al . Influence of port angle on performance of gas wave ejector and prediction for optimal angle[J]. CIESC Journal, 2012, 63(2): 573-577.
24 Koji O , Toshio N . Visualization of wave rotor inner flow dynamics[J]. Journal of Propulsion and Power, 2007, 23(2): 292-300.
25 Patankar S V . Numerical Heat Transfer and Fluid Flow[M]. New York: McGraw-Hill, 1980.
26 Chang C H , Liou M S . A new approach to the simulation of compressible multi-fluid flows with AUSM+ scheme[C]// AIAA 16th Computational Fluid Dynamics Conference. Orlando, Florida, USA: The American Institute of Aeronautics and Astronautics, 2003: 4107.
27 王海涛 . 变截面两端开口压力振荡管制冷性能分析[D]. 大连: 大连理工大学, 2017.
Wang H T . Refrigeration performance analysis of the variable cross-section double-opening pressure oscillation tube[D]. Dalian: Dalian University of Technology, 2017.
28 Hu D P , Li R F , Liu P Q , et al . The loss in charge process and effects on performance of wave rotor refrigerator[J]. International Journal of Heat and Mass Transfer, 2016, 100: 497-507.
29 潘锦珊, 单鹏 . 气体动力学基础[M]. 北京: 国防工业出版社, 2011.
Pan J S , Shan P . Fundamentals of Gas Dynamics[M]. Beijing: National Defense Industry Press, 2011.
[1] 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
[2] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[3] 陈虎, 陈倩, 刘长军, 黄卡玛, 龙卓. 基于SIW的介电系数宽带测量装置[J]. 化工学报, 2019, 70(S1): 182-185.
[4] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[5] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[6] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[7] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[8] 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831.
[9] 朱明汉, 白鹏飞, 胡艳鑫, 黄金. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357.
[10] 吴菁, 刘乙奇, 刘坚, 黄道平, 邱禹, 于广平. 基于动态多核相关向量机的软测量建模研究[J]. 化工学报, 2019, 70(4): 1472-1484.
[11] 邱君君, 张小松, 李玮豪. 无霜空气源热泵系统冬季除湿性能初步实验[J]. 化工学报, 2019, 70(4): 1605-1613.
[12] 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
[13] 吴晅, 李晓瑞, 马骏, 秦梦竹, 周雅慧, 李海广. 不同管口浸没方式下气泡生成行为特性[J]. 化工学报, 2019, 70(3): 901-912.
[14] 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
[15] 陈传刚, 丁雪兴, 陆俊杰, 张伟政, 陈金林. 摩擦副界面微造型序列对气体密封性能的影响[J]. 化工学报, 2019, 70(3): 1016-1026.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .