化工学报 ›› 2019, Vol. 70 ›› Issue (5): 1702-1712.doi: 10.11949/j.issn.0438-1157.20180962

• 流体力学与传递现象 • 上一篇    下一篇

coarse-grained CFD-DEM方法在不同流态流化床中的模拟验证

林俊杰(),罗坤(),王帅,胡陈枢,樊建人   

  1. 浙江大学能源清洁利用国家重点实验室,浙江 杭州 310027
  • 收稿日期:2018-08-27 修回日期:2019-02-22 出版日期:2019-05-05 发布日期:2019-05-10
  • 通讯作者: 罗坤 E-mail:linjunjie@zju.edu.cn;zjulk@zju.edu.cn
  • 作者简介:<named-content content-type="corresp-name">林俊杰</named-content>(1993—), 男,硕士研究生,<email>linjunjie@zju.edu.cn</email>|罗坤(1977—),男,博士,教授,<email>zjulk@zju.edu.cn</email>
  • 基金资助:
    国家重点研发计划项目(2017YFB0601805)

Verification of coarse-grained CFD-DEM method in multiple flow regimes

Junjie LIN(),Kun LUO(),Shuai WANG,Chenshu HU,Jianren FAN   

  1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2018-08-27 Revised:2019-02-22 Online:2019-05-05 Published:2019-05-10
  • Contact: Kun LUO E-mail:linjunjie@zju.edu.cn;zjulk@zju.edu.cn

摘要:

传统CFD-DEM方法的计算量随着系统内颗粒数目的增加而显著增加,coarse-grained CFD-DEM(粗颗粒)方法将若干个真实颗粒打包成虚拟颗粒从而显著减小系统计算量。在coarse-grained CFD-DEM方法进行应用之前,对其进行广泛的验证是有必要的。采用coarse-grained CFD-DEM方法模拟得到不同流态流化床的气固流动特征(固含率、压降、颗粒速度等),与传统CFD-DEM和实验测量吻合较好。另外,系统的计算效率随着粗颗粒放大系数的增加显著提升。研究表明,粗颗粒方法能够以较小的计算精度损失而使计算速度大幅提升,能够适用于大尺度稠密气固流动系统的模拟。

关键词: coarse-grained方法, 离散单元法, 计算流体力学, 流化床, 气固两相流, 计算效率

Abstract:

The computation load for traditional computational fluid dynamics-discrete element method (CFD-DEM) simulations tremendously increases when the number of particles augments in the system. The coarse-grained CFD-DEM method, in which a number of real particles are lumped into a numerical parcel, can remarkably reduce the computation load. It is necessary to extensively verify the coarse-grained CFD-DEM method before it is applied. Therefore, in the current work, the coarse-grained CFD-DEM method is validated in fluidized beds with various fluidization regimes. On one hand, it is found that gas and solid features (i.e., void fraction, pressure signals, and particle velocity) obtained from this method match well with the experiment measurements. On the other hand, as the coarse-grained ratios increase, the calculation time for a specific case is significantly reduced. In summary, the coarse-grained CFD-DEM contributes a great improvement of calculation efficiency while a little loss of numerical accuracy, which is expected to be a powerful tool to simulate gas-solid flow dynamics in large-scale dense particulate systems.

Key words: coarse-grained method, DEM, CFD, fluidized bed, gas-solid flow, computational efficiency

中图分类号: 

  • TQ 018

图1

鼓泡床模拟装置"

表1

物性参数(鼓泡流化床)"

Parameter Value
particle diameter/mm 3.256
particle density/(kg?m-3) 1131
original number of particles 95000
restitution coefficient 0.97
friction coefficient 0.35
collision spring constant/(N?m-1) 800
parcel diameter of CGP-k1.5/mm 4.884
parcel number of CGP-k1.5 28148
parcel diameter of CGP-k2/mm 6.512
parcel number of CGP-k2 11875
fluid density/(kg?m-3) 1.205
dynamic viscosity/(Pa·s) 1.8 × 10-5
superficial velocity/(m?s-1) 2.1

图2

传统CFD-DEM与coarse-grained CFD-DEM模拟所得鼓泡床中颗粒速度瞬态分布(t = 30 s)"

图3

鼓泡床时均分布"

图4

鼓泡床中压降对比及压力频谱特性对比"

图5

鼓泡床中不同模拟方法耗时对比"

图6

三维喷动床几何体示意图"

表2

物性参数(喷动床流化床)"

Parameter Value
particle diameter/mm 4.04
particle density/(kg?m-3) 2526
original number of particles 44800
restitution coefficient 0.97
friction coefficient 0.33
collision spring constant/(N?m-1) 800
parcel diameter of CGP-k1.5/mm 6.06
parcel number of CGP-k1.5 13274
parcel diameter of CGP-k2/mm 8.08
parcel number of CGP-k2 5600
fluid density/(kg?m-3) 1.205
dynamic viscosity/(Pa·s) 1.8 × 10-5
spouting velocity/(m?s-1) 65
background velocity/(m?s-1) 3.5

图7

传统CFD-DEM与coarse-grained CFD-DEM模拟所得喷动床中颗粒速度瞬态分布(t = 30 s)"

图8

喷动床气固流动特性"

图9

喷动床中颗粒垂直速度时均分布"

图10

喷动床中不同模拟方法耗时对比"

图11

循环流化床3-D几何结构及计算域网格划分"

图12

提升管不同高度处x = 0和y = 0截面固含率分布"

图13

循环流化床整床压降时均分布"

1 Erkiaga A , Lopez G , Amutio M , et al . Influence of operating conditions on the steam gasification of biomass in a conical spouted bed reactor[J]. Chemical Engineering Journal, 2014, 237:259-267.
2 Li T , Zhang Y , Grace J R , et al . Numerical investigation of gas mixing in gas-solid fluidized beds[J]. AIChE Journal, 2010, 56(9):2280-2296.
3 Braga M B , Wang Z , Grace J R , et al . Slot-rectangular spouted bed: hydrodynamic stability and effects of operating conditions on drying performance[J]. Drying Technology, 2015, 33(2):216-226.
4 Amirjan M , Khorsand H , Khorasani M . Fluidized bed coating efficiency and morphology of coatings for producing Al-based nanocomposite hollow spheres[J]. International Journal of Minerals, Metallurgy, and Materials, 2014, 21(11):1146-1151.
5 周池楼, 赵永志 . 离散单元法及其在流态化领域的应用 [J]. 化工学报, 2014, 65(7): 2520-2534.
Zhou C L , Zhao Y Z . Discrete element method and its applications in fluidization[J]. CIESC Journal, 2014, 65(7):2520-2534.
6 Zhang K , Luo K , Fan J R . TFM and DEM numerical simulation of bubbling fluidized bed with uniform gas inlet [J]. Journal of Engineering Thermophysics, 2011, 32(12): 2076-2079.
7 Sun L Y , Luo K , Fan J R . Numerical investigation on methanation kinetic and flow behavior in full-loop fluidized bed reactor [J]. Fuel, 2018, 231: 85-93.
8 Sun L Y , Luo K , Fan J R . Production of synthetic natural gas by CO methanation over Ni/Al2O3 catalyst in fluidized bed reactor [J]. Catal. Commun., 2018, 105: 37-42.
9 Sun L Y , Luo K , Fan J R . Numerical study on flow behavior of ultrafine powders in conical spouted bed with coarse particles[J]. Chemical Engineering Research and Design, 2017, 125 :461-470.
10 Wang Q G , Feng Y Q , Lu J F , et al . Numerical study of particle segregation in a coal beneficiation fluidized bed by a TFM-DEM hybrid model: influence of coal particle size and density[J]. Chemical Engineering Journal, 2015, 260:240-257.
11 万晓涛, 郑雨, 魏飞, 等 . 循环流化床提升管气固湍流的计算流体力学模拟——k-ε-k p-ε p-Θ 5参数双流体模型 [J]. 化工学报, 2002, 53(5): 461-468.
Wan X T , Zheng Y , Wei F , et al .Numerical simulation of gas-solid turbulent flow in riser reactor——k-ε-k p-ε p-Θ two-phase flow model[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(5): 461-468.
12 Wang S , Luo K , HU C S , et al . CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed [J]. Chemical Engineering Science, 2017, 172: 199-215.
13 Luo K , Wang S , Yang S L , et al . Computational fluid dynamics-discrete element method investigation of pressure signals and solid back-mixing in a full-loop circulating fluidized bed [J]. Industrial & Engineering Chemistry Research, 2017, 56(3): 799-813.
14 Yang S L , Luo K , Fan J R , et al . Particle-scale investigation of the solid dispersion and residence properties in a 3-D spout-fluid bed [J]. AIChE Journal, 2014, 60(8): 2788-2804.
15 Yang S L , Sun Y H , Wang J W , et al . Influence of operating parameters and flow regime on solid dispersion behavior in a gas-solid spout-fluid bed[J]. Chemical Engineering Science, 2016, 142:112-125.
16 Wang S , Luo K , Yang S , et al . Parallel LES-DEM simulation of dense flows in fluidized beds[J]. Applied Thermal Engineering, 2017, 111: 1523-1535.
17 Tsuji Y , Kawaguchi T , Tanaka T . Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1): 79-87.
18 Washino K , Hsu C H , Kawaguchi T , et al . Similarity model for DEM simulation of fluidized bed[J]. Journal of the Society of Powder Technology, 2007, 44(3): 198-205.
19 Sakai M , Abe M , Shigeto Y , et al . Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed[J]. Chemical Engineering Journal, 2014, 244:33-43.
20 Sakai M , Yamada Y , Shigeto Y , et al . Large-scale discrete element modeling in a fluidized bed[J]. International Journal for Numerical Methods in Fluids, 2010, 64(10/11/12):1319-1335.
21 Lu L Q , Benyahia S , Li T . An efficient and reliable predictive method for fluidized bed simulation[J]. AIChE Journal, 2017, 63(12): 5320-5334.
22 Yang S L , Cahyadi A , Sun Y , et al . CFD-DEM investigation into the scaling up of spout-fluid beds via two interconnected chambers [J]. AIChE Journal, 2016, 62(6): 1898-1916.
23 Yang S L , Cahyadi A , Wang J , et al . DEM study of granular flow characteristics in the active and passive regions of a three-dimensional rotating drum [J]. AIChE Journal, 2016, 62(11): 3874-3888.
24 Yang S L , Luo K , Qiu K , et al . Coupled computational fluid dynamics and discrete element method study of the solid dispersion behavior in an internally circulating fluidized bed [J]. Industrial & Engineering Chemistry Research, 2014, 53(16): 6759-6772.
25 Yang S L , Luo K , Fang M , et al . Discrete element study of solid mixing behavior with temperature difference in three-dimensional bubbling fluidized bed [J]. Industrial & Engineering Chemistry Research, 2014, 53(17): 7043-7055.
26 Hu C S , Luo K , Yang S L , et al . A comprehensive numerical investigation on the hydrodynamics and erosion characteristics in a pressurized fluidized bed with dense immersed tube bundles [J]. Chemical Engineering Science, 2016, 153: 129-145.
27 Smagorinsky J . General circulation experiments with the primitive equations [J]. Monthly Weather Review, 1963, 91(3): 99-164.
28 Gidaspow D . Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. New York:Academic Press, 1994.
29 Lu B , Wang W , Li J . Eulerian simulation of gas-solid flows with particles of Geldart groups A, B and D using EMMS-based meso-scale model[J]. Chemical Engineering Science, 2011, 66(20): 4624-4635.
30 Lu L Q , Xu J , Ge W , et al . EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows[J]. Chemical Engineering Science, 2014, 120:67-87.
31 Gopalan B , Shahnam M , Panday R , et al . Measurements of pressure drop and particle velocity in a pseudo 2-D rectangular bed with Geldart group D particles[J]. Powder Technology, 2016, 291: 299-310.
32 Luo K , Yang S L , Fang M M , et al . LES-DEM investigation of the solid transportation mechanism in a 3-D bubbling fluidized bed(I): Hydrodynamics [J]. Powder Technology, 2014, 256: 385-394.
33 Link J M , Deen N G , Kuipers J A M , et al . PEPT and discrete particle simulation study of spout‐fluid bed regimes[J]. AIChE Journal, 2008, 54(5): 1189-1202.
34 Yang S L , Luo K , Fang M M , et al . Influences of operating parameters on the hydrodynamics of a 3-D spout-fluid bed based on DEM modeling approach [J]. Chemical Engineering Journal, 2014, 247: 161-173.
35 Wang S , Luo K , Hu C S , et al . Effect of superficial gas velocity on solid behaviors in a full-loop CFB [J]. Powder Technology, 2018, 333: 91-105.
36 Luo K , Wu F , Yang S L , et al . High-fidelity simulation of the 3-D full-loop gas-solid flow characteristics in the circulating fluidized bed [J]. Chemical Engineering Science, 2015, 123: 22-38.
37 燕兰玲, 蓝兴英, 吴迎亚, 等 . FCC提升管内气体流经颗粒聚团流动特性的模拟研究 [J]. 化学反应工程与工艺, 2014, 30(1): 41-47.
Yan L L , Lan X Y , Wu Y Y , et al . Numerical simulation of flow behavior of gas flowing through clusters in FCC risers [J]. Chemical Reaction Engineering and Technology, 2014, 30(1):41-47.
38 Li J , Cheng C , Zhang Z , et al . The EMMS model — its application, development and updated concepts [J]. Chemical Engineering Science, 1999, 54(22): 5409-5425.
39 陈程, 祁海鹰 . EMMS曳力模型及其颗粒团模型的构建和检验 [J]. 化工学报, 2014, 65(6): 2003-2012.
Chen C , Qi H Y . Development and validation of cluster and EMMS drag model[J]. CIESC Journal, 2014, 65(6): 2003-2012.
[1] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[2] 苏武, 石孝刚, 吴迎亚, 高金森, 蓝兴英. 乙炔加氢制乙烯浆态床反应器的CFD模拟[J]. 化工学报, 2019, 70(5): 1858-1867.
[3] 佟颖, Ahmad Nouman, 鲁波娜, 王维. 基于EMMS介尺度模型的双分散鼓泡流化床的模拟[J]. 化工学报, 2019, 70(5): 1682-1692.
[4] 倪城振, 杜文莉, 胡贵华. 乙烯裂解炉耦合模拟中湍流模型的影响分析[J]. 化工学报, 2019, 70(2): 450-459.
[5] 刘英杰, 祝京旭. 气泡驱动液固流化床内二元颗粒的流化行为[J]. 化工学报, 2019, 70(1): 91-98.
[6] 殷上轶, 宋涛. CO2气氛下准东煤化学链燃烧特性研究[J]. 化工学报, 2018, 69(9): 3954-3964.
[7] 周云龙, 卢志叶, 王猛. 基于递归分析的喷雾气固流化床团聚状态识别[J]. 化工学报, 2018, 69(9): 3835-3842.
[8] 韩天义, 姚远, 徐珺, 齐立强, 李锦涛, 滕菲. 吸湿剂、表面活性剂及催化剂对烟气循环流化床脱硫的增效机制[J]. 化工学报, 2018, 69(9): 4044-4050.
[9] 陈亮, 赵帆, 闫广精, 王春波. H2O和SO2对CFB内石灰石同时煅烧/硫化反应中煅烧动力学的协同作用[J]. 化工学报, 2018, 69(9): 3859-3868.
[10] 李斌, 张尚彬, 张磊, 滕昭钰, 王佑天. 基于LBM-DEM的鼓泡床内气泡-颗粒动力学数值模拟[J]. 化工学报, 2018, 69(9): 3843-3850.
[11] 孙子文, 陈岱琳, 钟文琪, Aibing Yu. 快速流化床颗粒团絮特征的MP-PIC数值模拟[J]. 化工学报, 2018, 69(8): 3443-3451.
[12] 王亚雄, 杨景轩, 张忠林, 马旭莉, 李鹏, 郝晓刚, 官国清. 低阶煤热解-气化-燃烧TBCFB系统模拟及优化[J]. 化工学报, 2018, 69(8): 3596-3604.
[13] 古新, 罗元坤, 熊晓朝, 王珂, 陶智麟. 扭转流换热器结构参数对流场和温度场的影响[J]. 化工学报, 2018, 69(8): 3390-3397.
[14] 陈国旗, 孙见君, 孙电锋, 马晨波. 钠冷快堆核主泵用双端面自泵送机械密封性能分析[J]. 化工学报, 2018, 69(8): 3565-3576.
[15] 冯乐乐, 王景玉, 吴玉新, 张海, 张缦, 吕俊复, 岳光溪. 颗粒特性对撞击分离器性能影响的实验与数值研究[J]. 化工学报, 2018, 69(8): 3348-3355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .