化工学报 ›› 2019, Vol. 70 ›› Issue (1): 345-354.doi: 10.11949/j.issn.0438-1157.20180942

• 材料化学工程与纳米技术 • 上一篇    下一篇

分子动力学模拟研究两亲聚合物与疏水纳米粒子自组装核-壳结构

向文军(),朱朝菊,刘丹,周绿山   

  1. 四川文理学院化学化工学院,四川 达州 635000
  • 收稿日期:2018-08-20 修回日期:2018-10-31 出版日期:2019-01-05 发布日期:2018-11-12
  • 通讯作者: 向文军 E-mail:471236838@qq.com
  • 作者简介:向文军(1975—),男,硕士,副教授,<email>471236838@qq.com</email>
  • 基金资助:
    四川省科技厅应用基础T研究面上项目(2018JY0299),四川省教育厅重点项目(17ZA0337);四川省科技厅应用基础T研究面上项目(2018JY0299),四川省教育厅重点项目(17ZA0337)

Molecular dynamics simulations core-shell self-assembly from amphiphilic polymer and hydrophobic nanoparticle

Wenjun XIANG(),Zhaoju ZHU,Dan LIU,Lüshan ZHOU   

  1. School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000, Sichuan, China
  • Received:2018-08-20 Revised:2018-10-31 Online:2019-01-05 Published:2018-11-12
  • Contact: Wenjun XIANG E-mail:471236838@qq.com

摘要:

基于Martini力场采用粗粒化分子动力学模拟研究了Pluronic嵌段共聚合物在疏水纳米表面自组装膜结构,考察了Pluronic嵌段共聚合物结构对自组装单分子膜结构的影响。模拟结果发现Pluronic聚合物在疏水纳米表面自组装形成了以纳米材料为核,聚合物为壳的特殊核-壳结构。聚合物的浓度和结构都会影响该壳层结构,在浓度较低时,聚合物EO嵌段卷曲地附着在疏水纳米颗粒表面,类似形成层状的壳层结构;随着浓度的提高,EO嵌段伸向溶剂相,形成星形自组装膜结构。增加Pluronic共聚物相对分子质量,吸附在纳米材料的聚合物壳层厚度也逐渐增加。随着聚合物PO摩尔的增加,吸附在纳米材料表面的PO嵌段由“S”形或“W”形吸附逐渐变成“U”形吸附。这可能因为随着聚合物浓度的提高,有限的纳米颗粒表面不足以提供足够多的吸附位点导致聚合物吸附构型转变。

关键词: 核-壳结构, 聚合物, 纳米复合材料, 粗粒化, 分子模拟, 自组装膜

Abstract:

Based on the Martini force field, the structure of Pluronic block copolymer on the hydrophobic nano-surface self-assembled film was studied by coarse-grained molecular dynamics simulation. The effect of structure of Pluronic copolymer on the self-assembled monolayer film structure is studied systematically. As simulation results show the core-shell structure of polymer-nanoparticle composites were formed whose core originates from nanoparticle while their shell is composed with Pluronic copolymer. The concentration and structure of Pluronic copolymers have a significant influence on the core-shell structure. At lower concentration, a completely covered film was observed with crimp configuration of ethylene oxide (EO) blocks, meanwhile layered film covered on the NP surface. With further rise in the concentration, star-shaped films with stretching configuration of EO blocks were formed. The thickness of shell-layer increases as increasing the relative molecular weights of polymers. Moreover, Pluronic copolymers revealed a special assembled pattern on a NP surface: transform from “S-shaped” to “W-shaped” or “U-shaped” as increasing the molar ratio of propylene oxide (PO). This result may be caused by the fact that limited hydrophobic NP surface can t provide enough adsorption sites as increasing the polymer concentration.

Key words: core-shell structure, polymer, nanoparticle composites, coarse-graining, molecular simulations, self-assembled film

中图分类号: 

  • TQ 013.2

表1

Pluronic聚合物粗粒化珠子的键合相互作用参数[12,20] "

CG Pluronic Bond Angle
b 0/nm Kb /(kJ/(mol·nm2)) θ 0/(°) Kθ /( kJ/(mol?rad2))
EO-EO 0.28 8000 155 40
PO-PO 0.28 5000 140 40

图1

模拟系统及粗粒化示意图。模拟系统中含有溶剂水相(粉色W珠子)、纳米颗粒(黄色NP珠子)、Pluronic共聚物(F127为例,蓝色EO珠子,红色PO珠子)"

表2

Pluronic共聚物基本性质[6,7] "

Polymer CG topologies Molecular weight/(g/mol) Mole ratio of EO/%
F127 EO23PO21EO23 12600 68.66
P105 EO9PO18EO9 6500 50.00
P123 EO5PO21EO5 5750 32.26
P84 EO5PO13EO5 4200 43.48

图2

不同结构Pluronic共聚物在不同浓度时模拟形态(为了清楚表达Pluronic-疏水纳米复合材料的核-壳结构,水相隐藏)"

图3

Pluronic共聚物在不同浓度时的密度分布曲线"

图4

自组装膜厚度结构"

图6

不同结构Pluronic聚合物在不同浓度条件时的序参数"

1 Gu H , Yang Z , Gao J , et al . Heterodimers of nanoparticles: formation at a liquid-liquid interface and particle-specific surface modification by functional molecules[J]. Journal of the American Chemical Society, 2005, 127(1): 34-35.
2 Xu G K , Li Y , Li B , et al . Self-assembled lipid nanostructures encapsulating nanoparticles in aqueous solution[J]. Soft Matter, 2009, 5(20): 3977-3983.
3 Haun J B , Hammer D A . Quantifying nanoparticle adhesion mediated by specific molecular interactions[J]. Langmuir 2008, 24(16): 8821-8832.
4 Li Y , Rojas O J , Hinestroza J P . Boundary lubrication of PEO-PPO-PEO triblock copolymer physisorbed on polypropylene, polyethylene, and cellulose surfaces[J]. Industrial & Engineering Chemistry Research, 2012, 51: 2935-2944.
5 Tiberg F , Malmsten M , Linsem P , et al . Kinetic and equilibrium aspects of block copolymer adsorption[J]. Langmuir, 1991, 7(11): 2723-2730.
6 Sakai T , Alexandridis P . Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions[J]. Journal of Physical Chemistry B, 2005, 109(16): 7766-7777.
7 Zhou S , Sugawara-Narutaki A , Tsuboike S , et al . Nanoparticle vesicles with controllable surface topographies through block copolymer-mediated self-assembly of silica nanospheres[J]. Langmuir, 2015, 31(48): 13214-13220.
8 Lin Y , Daga V K , Anderson E R , et al . Nanoparticle-driven assembly of block copolymers: a simple route to ordered hybrid materials[J]. Journal of the American Chemical Society, 2011, 133(17): 6513-6516.
9 Koelman J M V A , Hoogerbrugge P J . Dynamic simulations of hard-sphere suspensions under steady shear[J]. EPL (Europhysics Letters), 1993, 21(3): 363.
10 Luu X C , Yu J , Striolo A . Nanoparticles adsorbed at the water/oil interface: coverage and composition effects on structure and diffusion, Langmuir,2013, 29(24): 7221-7228.
11 Sun N , Li Y , Wang D , et al . Mesoscopic simulation studies on the self-assembly of pluronic at oil/water interface[J]. Acta Chimica Sinica, 2013, 71(2): 186-192.
12 Wang L , Lin J , Zhang Q . Dissipative particle dynamics simulation on self-assembly of comb-coil copolymers[J]. Acta Chimica Sinica, 2013, 71(6): 913-919.
13 Groot R D , Warren P B . Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation[J]. Chem. Phys., 1997, 107(11): 4423.
14 Zeng Q H , Yu A B , Lu G Q . Multiscale modeling and simulation of polymer nanocomposites[J]. Progress in Polymer Science, 2008, 33(2): 191-269.
15 Xiang W J , Zhu Z , Song X , et al . Concentration-induced structural transition of block polymer self-assemblies on a nanoparticle surface: computer simulation[J]. RSC Advances, 2016, 6(104): 102057-102067.
16 Song X , Zhao S , Fang S , et al . Mesoscopic simulations of adsorption and association of peo-ppo-peo triblock copolymers on a hydrophobic surface: from mushroom hemisphere to rectangle brush[J]. Langmuir, 2016, 32(44): 11375-11385.
17 Monticelli L , Kandasamy S K , Periole X , Et Al . The MARTINI coarse- grained force field: extension to proteins[J]. Journal of Chemical Theory and Computation, 2008, 4(5): 819-834.
18 Uusitalo J J , Ing´Olfsson H I , Akhshi P , et al . Martini coarse-grained force field: extension to DNA[J]. Journal of Chemical Theory and Computation, 2015, 11(8): 3932-3945.
19 Rossi G , Elliott I G , Ala-Nissila T , et al . Molecular dynamics study of a MARTINI coarse-grained polystyrene brush in good solvent: structure and dynamics[J]. Macromolecules, 2011, 45: 563-571.
20 Oroskar P A , Jameson C J , Murad S . Surface functionalized nanoparticle permeation triggers lipid displacement and water and ion leakage[J]. Langmuir, 2015, 31(3): 1074-1085.
21 Nawaz S , Carbone P . Coarse-graining poly(ethylene oxide)-poly (propylene oxide)-poly(ethylene oxide) (PEO–PPO–PEO) block copolymers using the MARTINI force field[J]. Journal of Physical Chemistry B, 2014, 118(6): 1648-1659.
22 Hezaveh S , Samanta S , De Nicola A , et al . Understanding the interaction of block copolymers with DMPC lipid bilayer using coarse-grained molecular dynamics simulations[J]. Journal of Physical Chemistry B, 2012, 116(49): 14333-14345.
23 Hezaveh S . Study the interaction mechanisms of block copolymers with biological interfaces[D]. Italy: University of Salerno, 2012.
24 Prhashanna A , Khan S A , Chen S B . Co-micellization behavior in poloxamers: dissipative particle dynamics study[J]. Journal of Physical Chemistry B, 2014, 119(2): 572-582.
25 Costa K D , Hunter P J , Rogers J M , et al . A three-dimensional finite element method for large elastic deformations of ventricular myocardium(Ⅰ): Cylindrical and spherical polar coordinates[J]. Journal of Biomechanical Engineering, 1996, 118(4): 452-463.
26 Wu R , Deng M , Kong B , et al . Coarse-grained molecular dynamics simulation of ammonium surfactant self-assemblies: micelles and vesicles[J]. Journal of Physical Chemistry B, 2009, 113(45): 15010-15016.
27 Alexandridis P , Hatton A T . Poly(ethylene oxide)– poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 96(1): 1-46.
28 Brandani P , Stroeve P . Kinetics of adsorption and desorption of PEO–PPO–PEO triblock copolymers on a self-assembled hydrophobic surface[J]. Macromolecules, 2003, 36(25): 9502-9509.
29 Li Y , Guo Y , Bao M , et al . Investigation of interfacial and structural properties of CTAB at the oil/water interface using dissipative particle dynamics simulations[J]. Journal of Colloid and Interface Science, 2011, 361(2): 573-580.
30 Nikunen P , Vattulainen I , Karttunen M . Reptational dynamics in dissipative particle dynamics simulations of polymer melts[J]. Physical Review E, 2007, 75(3): 036713.
31 Liu H , Li Y , Krause W E , et al . Mesoscopic simulations of the phase behavior of aqueous EO19PO29EO19 solutions confined and sheared by hydrophobic and hydrophilic surfaces[J]. ACS Applied Materials & Interfaces, 2011, 4(1): 87-95.
32 Xiang W , Zhao S , Song X , et al . Amphiphilic nanosheet self-assembly at the water/oil interface: computer simulations[J]. Physical Chemistry Chemical Physics, 19(11): 7576-7586.
[1] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[2] 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
[3] 刘小芳, 郭海燕, 张胜男, 黄靓. 聚糖菌反硝化影响因素及内碳源转化特性[J]. 化工学报, 2019, 70(3): 1127-1134.
[4] 郭婉婉, 李如月, 黄军. 交联菲罗啉负载铜催化剂用于合成三甲基苯醌[J]. 化工学报, 2019, 70(3): 929-936.
[5] 周强, 郝军正, 祝琳华, 王红, 司甜, 何艳萍, 孙彦琳. 泡沫相相分离制备多孔聚合物微球连续化工艺[J]. 化工学报, 2019, 70(3): 1208-1219.
[6] 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
[7] 梁馨元, 张磊, 刘琳琳, 都健. 基于分子动力学的橡胶聚合物计算机辅助设计方法[J]. 化工学报, 2019, 70(2): 525-532.
[8] 陈政, 王莉, 周健. 双响应性嵌段聚合物的纳米孔开关效应的计算机模拟[J]. 化工学报, 2019, 70(1): 271-279.
[9] 蔡惊涛, 李代禧, 刘宝林, 栾翰森, 郭柏松, 魏冬青, 王浩. 尿素(520)晶面可控结晶的分子动力学模拟[J]. 化工学报, 2019, 70(1): 128-135.
[10] 王鑫, 杨斌鑫. 耦合格子Boltzmann的聚合物结晶相场方法[J]. 化工学报, 2018, 69(S2): 193-199.
[11] 丁屹, 丁国良, 庄大伟. 排汗冷却材料用于人体舒适度调节的技术原理及进展[J]. 化工学报, 2018, 69(S2): 9-16.
[12] 刘凡犁, 刘广志, 王沫然. 微纳孔隙中复杂流体液滴驱替的跨尺度混合模拟[J]. 化工学报, 2018, 69(9): 3783-3791.
[13] 武宇辉, 杨悦锁, 赵传起, 张茜, 陈煜, 徐斌. 水土环境中微生物胞外聚合物对污染物迁移和归宿影响的研究进展[J]. 化工学报, 2018, 69(8): 3303-3317.
[14] 齐畅, 卢滇楠, 刘永民. 优化温度相关力场预测正构烷烃热力学性质[J]. 化工学报, 2018, 69(8): 3338-3347.
[15] 季佳圆, 赵伶玲. 范德华力对Lennard-Jones体黏弹性的影响[J]. 化工学报, 2018, 69(8): 3331-3337.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .