化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1263-1271.doi: 10.11949/j.issn.0438-1157.20180936

• 流体力学与传递现象 • 上一篇    下一篇

组合相变材料强化固液相变传热可视化实验

王慧儒(),刘振宇,姚元鹏,吴慧英()   

  1. 上海交通大学机械与动力工程学院,上海 200240
  • 收稿日期:2018-08-20 修回日期:2019-01-29 出版日期:2019-04-05 发布日期:2019-04-17
  • 通讯作者: 吴慧英 E-mail:wanghrfy@163.com;whysrj@sjtu.edu.cn
  • 作者简介:<named-content content-type="corresp-name">王慧儒</named-content>(1981—),女,博士研究生,<email>wanghrfy@163.com</email>|吴慧英(1967—),女,博士,教授,<email>whysrj@sjtu.edu.cn</email>
  • 基金资助:
    国家自然科学基金项目(51820105009,51536005,51521004)

Visualized experiment on solid-liquid phase change heat transfer enhancement with multiple PCMs

Huiru WANG(),Zhenyu LIU,Yuanpeng YAO,Huiying WU()   

  1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2018-08-20 Revised:2019-01-29 Online:2019-04-05 Published:2019-04-17
  • Contact: Huiying WU E-mail:wanghrfy@163.com;whysrj@sjtu.edu.cn

摘要:

采用高清相机和红外热像技术,对组合相变材料融化-凝固循环过程与传热特性开展了可视化实验研究。以填充三种石蜡的相变蓄热腔体为研究对象,追踪了腔体内固液相界面的动态演化过程和温度分布的变化规律。在此基础上,考察了相变材料布置顺序对蓄热腔体热性能的影响,分析了组合相变材料蓄热腔体的相变行为及强化传热特性。结果表明,相变温度较高的相变材料应靠近加热壁面布置;组合相变材料蓄热腔体存在多个固液相界面现象,不同相变材料可同时融化/凝固;与单一相变材料相比,组合相变材料的应用改善了蓄热腔体各单元相变速率的均匀性,提高了平均相变速率;组合相变材料虽然降低了蓄热腔体的显热蓄热量,但减小了温度变化速率,增强了系统的稳定性,并显著增加了潜热蓄热量,有效提高了相变蓄热腔体的总蓄热量。

关键词: 组合相变材料, 蓄热, 相界面, 温度分布, 可视化

Abstract:

Visualization experiments were carried out on the melting-solidification cycle process and heat transfer characteristics of the multiple phase change materials (multiple PCMs) using high-definition cameras and infrared thermal imaging technology. Three paraffins (RT65, RT42 and RT27) were used as multiple PCMs and filled into the TES container. The effect of PCM arrangement on thermal performance of the TES container was investigated. The dynamic evolution of solid-liquid interfaces was recorded by a high definition (HD) camera and the variation of temperature distribution was measured by an infrared camera. As the melting-solidification cyclic process was stabilized, the solid-liquid phase change behavior and thermal characteristics of the multiple-PCM TES container were obtained and compared with that of single-PCM TES container. The results show that the PCM with higher phase change temperature should be located near the heated wall. There exist multiple solid-liquid interfaces in multiple-PCM TES container, the paraffins in different PCM units can melt/solidify simultaneously. The uniformity of phase change rate is greatly improved by multiple PCMs, which increases the average phase change rate. The phase change fraction of multiple-PCM TES container is 40% higher than that of single-PCM TES container. Although the sensible heat storage capacity of multiple-PCM TES container is a little lower than that of single-PCM TES container, the variation rate of temperature is reduced, which enables the TES container work more stable. The latent heat storage capacity of TES container is significantly increased by the utilization of multiple PCMs. As a result, the total heat storage capacity of multiple-PCM TES container is 34.6% higher than that of single-PCM TES container.

Key words: multiple PCMs, thermal energy storage, phase interface, temperature distribution, visualization

中图分类号: 

  • TK 124

图1

石蜡的DSC曲线"

表1

石蜡的热物性参数"

热物性参数 RT65 RT42 RT27
相变温度T m/℃ 63.2 43.4 28.8
潜热h sf /(kJ·kg-1) 172.0 148.2 154.3
比热容cp /(kJ·kg-1·K-1)
固体 2.90 3.02 3.44
液体 2.50 2.33 2.53
密度ρ /(kg?m-3)
固体 870 880 870
液体 760 760 740
热导率λ/(W?m-1?K-1)
固体 0.23 0.24 0.23
液体 0.17 0.17 0.16

图2

可视化实验系统示意图"

表2

单一和组合相变材料蓄热腔体中石蜡的布置"

编号 单一/组合相变材料 PCM 1# PCM 2# PCM 3#
1# RT27 RT27 RT27 RT27
2# RT42 RT42 RT42 RT42
3# RT65 RT65 RT65 RT65
4# RT65–RT42–RT27 RT65 RT42 RT27
5# RT65–RT27–RT42 RT65 RT27 RT42
6# RT42–RT65–RT27 RT42 RT65 RT27
7# RT42–RT27–RT65 RT42 RT27 RT65
8# RT27–RT42–RT65 RT27 RT42 RT65
9# RT27–RT65–RT42 RT27 RT65 RT42

图3

不同石蜡布置的单一和组合相变材料蓄热腔体内固液相界面"

图4

融化-凝固过程不同单一和组合相变材料相变比例"

图5

不同相变蓄热腔体固液相界面的演化"

图6

红外热像仪与热电偶温度测量结果的比较"

图7

不同相变蓄热腔体温度分布的变化"

图8

单一和组合相变材料蓄热腔体不同相变材料单元液相率的比较"

图9

单一和组合相变材料蓄热腔体平均液相率的比较"

图10

单一和组合相变材料蓄热腔体蓄热量比较"

1 Lin Y , Jia Y , Alva G , et al . Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742.
2 Dhaidan N S , Khodadadi J M , Al-Hattab T A , et al . Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity[J]. International Journal of Heat and Mass Transfer, 2013, 67: 455-468.
3 施尚, 余建祖, 陈梦东, 等 . 基于泡沫铜/石蜡的锂电池热管理系统性能[J]. 化工学报, 2017, 68(7): 2678-2683.
Shi S , Yu J Z , Chen M D , et al . Battery thermal management system using phase change materials and foam copper[J]. CIESC Journal, 2017, 68(7): 2678-2683.
4 Yao Y , Wu H , Liu Z , et al . Pore-scale visualization and measurement of paraffin melting in high porosity open-cell copper foam[J]. International Journal of Thermal Sciences, 2018, 123: 73-85.
5 张鹏, 肖鑫, 王如竹, 等 . 壳管式潜热蓄能系统换热特性[J]. 化工学报, 2012, 63(S2): 14-20.
Zhang P , Xiao X , Wang R Z , et al . Heat transfer characteristics of shell-tube latent thermal energy storage system[J]. CIESC Journal, 2012, 63(S2): 14-20.
6 Jegadheeswaran S , Pohekar S D . Performance enhancement in latent heat thermal storage system: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2225-2244.
7 Ibrahim N I , Al-Sulaiman F A , Rahman S , et al . Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50.
8 Farid M M . Storage of solar energy with phase change[J]. Journal of Solar Energy Research, 1986, 4: 11-29.
9 Farid M M , Kanzawa A . Thermal performance of a heat storage module using PCM's with different melting temperatures: mathematical modeling[J]. Journal of Solar Energy Engineering, 1989, 111: 152-157.
10 Mosaffa A H , Infante F C A , Talati F , et al . Thermal performance of a multiple PCM thermal storage unit for free cooling[J]. Energy Conversion and Management, 2013, 67: 1-7.
11 Mosaffa A H , Garousi F L , Infante F C A , et al . Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications[J]. Renewable Energy, 2014, 68: 452-458.
12 Gong Z X , Mujumdar A S . Cyclic heat transfer in a novel storage unit of multiple phase change materials[J]. Applied Thermal Engineering, 1996, 16(10): 807-815.
13 Fang M , Chen G . Effects of different multiple PCMs on the performance of a latent thermal energy storage system[J]. Applied Thermal Engineering, 2007, 27: 994-1000.
14 Seeniraj R V , Lakshmi N N . Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs[J]. Solar Energy, 2008, 82: 535-542.
15 Adine H A , El Q H . Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials[J]. Applied Mathematical Modelling, 2009, 33: 2132-2144.
16 Kurnia J C , Sasmito A P , Jangam S V , et al . Improved design for heat transfer performance of a novel phase change material (PCM) thermal energy storage (TES)[J]. Applied Thermal Engineering, 2013, 50: 896-907.
17 Liu M , Tay N H S , Belusko M , et al . Investigation of cascaded shell and tube latent heat storage systems for solar tower power plants[J]. Energy Procedia, 2015, 69: 913-924.
18 Yang L , Zhang X , Xu G . Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points[J]. Energy and Buildings, 2014, 68: 639-646.
19 杨磊, 张小松 . 多熔点相变材料堆积蓄热床蓄热性能分析[J]. 化工学报, 2012, 63(4): 1032-1037.
Yang L , Zhang X S . Charge performance of packed bed thermal storage unit with phase change material having different melting points[J]. CIESC Journal, 2012, 63(4): 1032-1037.
20 Wu M , Xu C , He Y . Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules[J]. Applied Thermal Engineering, 2016, 93: 1061-1073.
21 Cui H , Yuan X , Hou X . Thermal performance analysis for a heat receiver using multiple phase change materials[J]. Applied Thermal Engineering, 2003, 23: 2353-2361.
22 Tao Y B , He Y L , Liu Y K , et al . Performance optimization of two-stage latent heat storage unit based on entransy theory[J]. International Journal of Heat and Mass Transfer, 2014, 77: 695-703.
23 王慧儒, 吴慧英 . 最小热阻原理在组合式相变材料蓄热过程优化中的应用[J]. 科学通报, 2015, 60(34): 3377-3385.
Wang H R , Wu H Y . Application of minimum thermal resistance principle in optimization for melting process with multiple PCMs[J]. Chinese Science Bulletin, 2015, 60(34): 3377-3385.
24 Ezra M , Kozak Y , Dubovsky V , et al . Analysis and optimization of melting temperature span for a multiple-PCM latent heat thermal energy storage unit[J]. Applied Thermal Engineering, 2016, 93: 315-329.
25 Xu H J , Zhao C Y . Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model[J]. Renewable Energy, 2016, 86: 228-237.
26 Wang H , Liu Z , Wu H . Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array[J]. Energy, 2017, 138: 739-751.
27 Watanabe T , Kikuchi H , Kanzawa A . Enhancement of charging and discharging rates in a latent heat storage system by use of PCM with different melting temperatures[J]. Heat Recovery Systems and CHP, 1993, 13(1): 57-66.
28 Wang J , Ouyang Y , Chen G . Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials[J]. International Journal of Energy Research, 2001, 25: 439-447.
29 Michels H , Pitz-Paal R . Cascaded latent heat storage for parabolic trough solar power plants[J]. Solar Energy, 2007, 81: 829-837.
30 Peiró G , Gasia J , Miró L , et al . Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage[J]. Renewable Energy, 2015, 83: 729-736.
[1] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[2] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
[3] 戴波, 周泽彧, 张岩, 林双双, 刘学君. 危化品仓储堆垛安全距离监测系统设计[J]. 化工学报, 2019, 70(2): 707-715.
[4] 胡晨辉, 王亦飞, 包泽彬, 于广锁. 蒸发热水塔内固体颗粒对气泡运动的影响[J]. 化工学报, 2019, 70(1): 39-48.
[5] 谢艳琦, 诸凯, 王雅博. 冷冻条件对植物细胞低温保存的影响[J]. 化工学报, 2018, 69(S2): 200-204.
[6] 周刊, 李蔚, 李俊业, 朱华, 盛况, 白光辉, 常浩. 微细通道内超亲水改性表面饱和沸腾的传热特性[J]. 化工学报, 2018, 69(S2): 82-88.
[7] 傅允准, 武双, 林继超, 巨永林, 牛伟琛. B型液化天然气模拟舱绝热材料破损对蒸发率影响的实验研究[J]. 化工学报, 2018, 69(S2): 123-127.
[8] 傅允准, 李鹏魁, 巨永林. LNG船B型液货舱绝热材料破损对蒸发率的影响模拟分析[J]. 化工学报, 2018, 69(S2): 500-504.
[9] 梁林, 刁彦华, 康亚盟, 赵耀华, 魏向前, 陈传奇. 平板微热管阵列-泡沫铜复合结构相变蓄热装置蓄放热特性[J]. 化工学报, 2018, 69(S1): 34-42.
[10] 何媚质, 杨鲁伟, 张振涛, 杨俊玲. 纳米材料/十四酸混合相变蓄热材料的制备与特性[J]. 化工学报, 2018, 69(9): 4097-4105.
[11] 张文超, 焦琦, 周云龙, 杨美, 金光远, 杜利鹏. 矩形通道内低压自然循环压降型脉动及其复合型脉动可视化研究[J]. 化工学报, 2018, 69(6): 2455-2462.
[12] 李梦遥, 杜文莉, 钱锋. 基于双层DAE-SOM的多指标工况识别方法[J]. 化工学报, 2018, 69(2): 769-778.
[13] 孙春华, 宁智, 乔信起, 李元绪, 吕明. 气泡雾化喷嘴泡状流出口喷雾脉动特征[J]. 化工学报, 2018, 69(10): 4253-4260.
[14] 严润刚, 潘良明, 何辉, 黄豪杰, 李鹏斐. 多微通道内两相流动阻力特性及气泡行为[J]. 化工学报, 2017, 68(S1): 66-70.
[15] 张弘喆, 贾先剑, 郭航, 郭青, 闫小克, 叶芳, 马重芳. 冷却水参数对钠钾合金热管传热性能影响[J]. 化工学报, 2017, 68(S1): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .