化工学报 ›› 2019, Vol. 70 ›› Issue (3): 1188-1197.doi: 10.11949/j.issn.0438-1157.20180895

• 材料化学工程与纳米技术 • 上一篇    下一篇

氧化石墨烯/石蜡复合相变乳液的制备及对流传热特性

刘小诗(),邹得球(),贺瑞军,马先锋   

  1. 宁波大学海运学院,浙江 宁波 315211
  • 收稿日期:2018-08-03 修回日期:2018-11-10 出版日期:2019-03-05 发布日期:2019-04-03
  • 通讯作者: 邹得球 E-mail:1563940515@qq.com;zoudeqiu@nbu.edu.cn
  • 作者简介:<named-content content-type="corresp-name">刘小诗</named-content>(1992—),男,硕士研究生,<email>1563940515@qq.com</email>|邹得球(1981—),男,博士,副教授,<email>zoudeqiu@nbu.edu.cn</email>
  • 基金资助:
    浙江省自然科学基金项目(LY17E060001);宁波市自然科学基金项目(2017A610019);国家自然科学基金项目(51206083)

Preparation and heat transfer characteristics of GO/paraffin composite phase change emulsions

Xiaoshi LIU(),Deqiu ZOU(),Ruijun HE,Xianfeng MA   

  1. Faculty of Maritime and Transportation,Ningbo University,Ningbo 315211,Zhejiang,China
  • Received:2018-08-03 Revised:2018-11-10 Online:2019-03-05 Published:2019-04-03
  • Contact: Deqiu ZOU E-mail:1563940515@qq.com;zoudeqiu@nbu.edu.cn

摘要:

为提高石蜡相变乳液的传热性能,通过添加氧化石墨烯(GO),制备了GO/石蜡复合相变乳液并对其相关性能进行了表征。搭建了流动阻力、对流换热试验台,对比研究了石蜡相变乳液及GO/石蜡复合相变乳液的流动阻力特性和对流换热特性,试验结果表明,由于GO的亲水性,复合相变乳液都表现出较好的稳定性。当GO的质量分数为0.01%、0.02%、0.03%时,复合相变乳液的热导率分别增加了20.01%、30.50%、35.18%。添加GO使乳液的流动阻力略有增加,直管段最大增加了6.70%,90°弯管处最大增加了13.20%;对流传热系数随着GO浓度的增加而增大,当GO浓度为0.03%时,对流传热系数最大提高了43.90%。

关键词: 相变, 乳液, 纳米粒子, 传热, 氧化石墨烯

Abstract:

To improve the heat transfer performance of paraffin phase change emulsion, GO/paraffin composite phase change emulsion was prepared by adding graphene oxide (GO) and its properties were characterized. The flow resistance and convection heat transfer test rig were set up, and the flow resistance characteristics and convective heat transfer characteristics of paraffin phase change emulsion and GO/paraffin composite phase change emulsion were comparatively studied. The results show that the composite phase change emulsion shows good stability due to the hydrophilicity of GO. When the mass fraction of GO is 0.01%, 0.02%, and 0.03%, the thermal conductivity of the composite phase change emulsion increases by 20.01%, 30.50%, and 35.18%, respectively. The flow resistance of the GO/paraffin composite phase change emulsion increases slightly compared to that of paraffin phase change emulsion. The straight pipe section increased by 6.70%, and the 90°elbow section increased by 13.20%.The convective heat transfer coefficient increases with the increase of GO concentration. The maximum convective heat transfer coefficient was increased by 43.90% at the GO addition amount of 0.03%.

Key words: phase change, emulsions, nanoparticles, heat transfer, graphene oxide

中图分类号: 

  • TB 34

图1

氧化石墨烯的SEM图"

图2

GO/石蜡复合相变乳液外观"

图3

GO/石蜡复合相变乳液的分散稳定性"

图4

流动特性测试系统"

图5

水平直管、 90°局部弯管和测试管横截面 (单位: mm)"

图6

对流换热特性测试系统"

图7

水Nu试验测量值与经典理论公式计算值比较"

表1

试验误差"

ParameterUncertainty/%
L±0.29
D±0.1
qm±0.2
ΔP±1.1
Re±0.9
h±1.7

图8

复合乳液黏度随温度的变化情况"

图9

GO/石蜡相变乳液在水平直管中的压降变化"

图10

GO/石蜡相变乳液在90°弯管中的压降变化情况"

表2

不同质量分数GO/石蜡相变乳液的热导率"

Test sampleThermal conductivity/(W/(m·K))
water0.599
PCE0.359
0.01%(mass)GO0.431
0.02%(mass)GO0.469
0.03%(mass)GO0.485

图11

不同质量分数GO/石蜡相变乳液流传热系数的变化情况"

图12

不同浓度GO/石蜡相变乳液对流传热系数提高率"

1 黄莉.石蜡/水相变乳液的制备与性能[J]. 化工学报, 2018, 69(4): 1749-1757.
HuangL.Preparation and properties of paraffin/water phase change emulsion[J]. CIESC Journal, 2018, 69(4): 1749-1757.
2 刘东, 何蔚然, 钟小龙, 等.潜热型功能热流体在微小管道内的换热特性[J]. 化工进展, 2016, 35(10): 3042-3048.
LiuD, HeW R, ZhongX L, et al.The heat transfer characteristics of latent functionally thermal fluid in micro tube[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3042-3048.
3 ZouD, FengZ, XiaoR, et al.Preparation and flow characteristic of a novel phase change fluid for latent heat transfer[J]. Solar Energy Materials & Solar Cells, 2010, 94(12): 2292-2297.
4 KumaresanV, ChandrasekaranP, NandaM, et al.Role of PCM based nanofluids for energy efficient cool thermal storage system[J]. International Journal of Refrigeration, 2013, 36(6): 1641-1647.
5 LiuJ, XuC, ChenL L, et al.Preparation and photo-thermal conversion performance of modified graphene/ionic liquid nanofluids with excellent dispersion stability[J]. Solar Energy Materials & Solar Cells, 2017, 170: 219-232.
6 GhorbaniH R.Preparation of copper nanofluids using an appropriate technique[J]. Oriental Journal of Chemistry, 2014, 30(4): 2025-2028.
7 LiD, HongB, FangW, et al.Preparation of well-dispersed silver nanoparticles for oil-based nanofluids[J]. Industrial & Engineering Chemistry Research, 2010, 49(4): 1697-1702.
8 LiuM S, LinC C, TsaiC Y, et al.Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method[J]. International Journal of Heat & Mass Transfer, 2006, 49(17): 3028-3033.
9 MadheshD, KalaiselvamS.Experimental study on the heat transfer and flow properties of Ag-ethylene glycol nanofluid as a coolant[J]. Heat & Mass Transfer, 2014, 50(11): 1597-1607.
10 DasS K, PutraN, ThiesenP, et al.Temperature dependence of thermal conductivity enhancement for nanofluids[J]. Journal of Heat Transfer, 2003, 125(4): 567.
11 常强.碳纳米管纳米流体传热特性实验研究[D]. 青岛: 青岛科技大学, 2015.
ChangQ.Experimental study on the thermal conductivity of carbon nanotubes nanofluids[J]. Qingdao: Qingdao University of Science and Technology, 2015.
12 向军,李菊香.纳米悬浮液的有效导热系数[J]. 低温与超导, 2009, 37(1): 59-62.
XiangJ, LiJ X.Effective thermal conductiv ity of nanoparticles suspension[J]. Cryo. & Supercond, 2009, 37(1): 59-62.
13 MorimotoT, TogashiK, KumanoH, et al.Thermophysical properties of phase change emulsions prepared by D-phase emulsification[J]. Energy Conversion & Management, 2016, 122: 215-222.
14 ZhangX, WuJ Y, NiuJ.PCM-in-water emulsion for solar thermal applications: the effects of emulsifiers and emulsification conditions on thermal performance, stability and rheology characteristics[J]. Solar Energy Materials & Solar Cells, 2016, 147: 211-224.
15 HoC J, GaoJ Y.Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material [J]. International Communications in Heat & Mass Transfer, 2009, 36(5): 467-470.
16 ZhengY F, QiuZ Z, ChenJ.The investigation of phase change emulsion (PCE): fabrication, thermal conductivity and utilization of nanoparticles[J]. Advanced Materials Research, 2014, 860-863: 862-866.
17 邹得球, 肖睿, 何世辉, 等.基于纳米粒子/相变石蜡乳状液的研究[J]. 材料导报, 2009, 23(15): 103-107.
ZouD Q, XiaoR, HeS H, et al.Research based on nanoparticles/ phase change wax emulsion[J]. Materials Review, 2009, 23(15): 103-107.
18 杨志涛, 张军强, 宗冬冬, 等.SiO2改性石墨烯–石蜡复合相变乳液的制备及热性能[J]. 新能源进展, 2017, 5(2): 110-116.
YangZ T, ZhangJ Q, ZongD D, et al.Preparation and thermal properties of SiO2 modified graphene-paraffin composite phase change emulsions[J]. Advances in New and Renewable Energy, 2017, 5(2): 110-116.
19 毛凌波, 梁志彬, 林敬堂, 等.纳米材料增强石蜡相变乳状液在太阳能中的应用[J]. 太阳能学报, 2016, 37(1): 142-146.
MaoL B, LiangZ B, LinJ T, et al.Nanomaterials enhanced phase change wax emulisions used in the solar energy[J]. Acta Energiae Solaris Sinica, 2016, 37(1): 142-146.
20 WangF, ZhangC, LiuJ, et al.Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage[J]. Applied Energy, 2017, 188: 97-106.
21 WangF, LiuJ, FangX, et al.Graphite nanoparticles-dispersed paraffin/water emulsion with enhanced thermal-physical property and photo-thermal performance[J]. Solar Energy Materials & Solar Cells, 2016, 147: 101-107.
22 YuW, XieH, BaoD.Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets[J]. Nanotechnology, 2010, 21(5): 055705.
23 GuptaS S, SivaV M, KrishnanS, et al.Thermal conductivity enhancement of nanofluids containing graphene nanosheets[J]. Journal of Applied Physics, 2011, 110(8): 902.
24 YuW, XieH, ChenW.Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets[J]. Journal of Applied Physics, 2010, 107(9): 666.
25 KausarA.Enhanced electrical and thermal conductivity of modified poly(acrylonitrile-co-butadiene)-based nanofluid containing functional carbon black-graphene oxide[J]. Fullerene Science & Technology, 2016, 24(4): 278-285.
26 RanjbarzadehR, KarimipourA, AfrandM, et al.Empirical analysis of heat transfer and friction factor of water/graphene oxide nanofluid flow in turbulent regime through an isothermal pipe[J]. Applied Thermal Engineering, 2017, 126: 538-547.
27 ÖzerinçS, KakaçS, YaziciogluA G.Enhanced thermal conductivity of nanofluids: a state-of-the-art review[J]. Microfluidics & Nanofluidics, 2010, 8(2): 145-170.
28 KibriaM A, AnisurM R, MahfuzM H, et al.A review on thermophysical properties of nanoparticle dispersed phase change materials[J]. Energy Conversion & Management, 2015, 95: 69-89.
29 刘彦丰, 高正阳, 梁秀俊.传热学[M]. 北京:中国电力出版社, 2015: 54.
LiuY F, GaoZ Y, LiangX J, et al.Heat Transfer[M]. Beijing: China Electric Power Press, 2015: 54.
30 MoffatR J.Describing the uncertainties in experimental results[J]. Experimental Thermal & Fluid Science, 1988, 1(1): 3-17.
31 MaZ W, ZhangP, WangR Z, et al.Forced flow and convective melting heat transfer of clathrate hydrate slurry in tubes[J]. International Journal of Heat & Mass Transfer, 2010, 53(19): 3745-3757.
32 MaZ W, ZhangP.Pressure drops and loss coefficients of a phase change material slurry in pipe fittings[J]. International Journal of Refrigeration, 2012, 35(4): 992-1002.
33 张飞龙, 王莉, 俞树荣, 等.氧化石墨烯及其导热纳米流体的制备与性能[J]. 功能材料, 2015, 46(16): 16138-16141.
ZhangL F, WangL, YuS R, et al.Preparation and properties of graphene oxide and its thermally conductive nanofluid[J].Journal of Functional Materials, 2015, 46(16): 16138-16141.
34 FotukianS M, EsfahanyM N.Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube[J]. International Communications in Heat & Mass Transfer, 2010, 37(2): 214-219.
[1] 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34.
[2] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[3] 于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225.
[4] 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78.
[5] 杨俊兰, 宁淑英. 紧凑通道内CO2/润滑油混合物沸腾换热特性研究[J]. 化工学报, 2019, 70(5): 1772-1778.
[6] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[7] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[8] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[9] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[10] 颜建国, 朱凤岭, 郭鹏程, 罗兴锜. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787.
[11] 周麟晨, 孙志高, 陆玲, 王赛, 李娟, 李翠敏. 有机相变乳液中HCFC–141b水合物生成及稳定性[J]. 化工学报, 2019, 70(5): 1674-1681.
[12] 宋宇淙, 丁晓墅, 闫亚辉, 王淑芳, 王延吉. 氧化石墨烯复合金属催化剂催化碳酸二甲酯合成反应性能[J]. 化工学报, 2019, 70(4): 1401-1408.
[13] 王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271.
[14] 柴叶霞, 陈华艳, 贾悦, 李丹丹, 武春瑞, 吕晓龙. PVDF中空纤维换热管超疏水表面强化蒸气滴状冷凝传热[J]. 化工学报, 2019, 70(4): 1331-1339.
[15] 陈曦, 林毅, 邵帅. 倾角及加热功率对乙烷脉动热管传热性能的影响[J]. 化工学报, 2019, 70(4): 1383-1389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .