化工学报 ›› 2019, Vol. 70 ›› Issue (3): 892-900.doi: 10.11949/j.issn.0438-1157.20180818

• 流体力学与传递现象 • 上一篇    下一篇

超疏水表面太阳能加热金-水纳米流体液滴蒸发特性

闫鑫(),徐进良()   

  1. 华北电力大学北京市低品位能源多相流与传热重点实验室,北京 102206
  • 收稿日期:2018-07-18 修回日期:2018-12-14 出版日期:2019-03-05 发布日期:2019-01-04
  • 通讯作者: 徐进良 E-mail:yanxin3.14@163.com;xjl@ncepu.edu.cn
  • 作者简介:<named-content content-type="corresp-name">闫鑫</named-content>(1992—),男,博士研究生,<email>yanxin3.14@163.com</email>|徐进良(1966—),男,博士,教授,<email>xjl@ncepu.edu.cn</email>
  • 基金资助:
    国家自然科学基金创新研究群体项目(51821004);国家自然科学基金重点项目(51436004);中央高校基本科研业务费专项资金(2018ZD02,2018QN020)

Character of sessile gold-water nanofluid droplet evaporation with solar heating on superhydrophobic surface

Xin YAN(),Jinliang XU()   

  1. Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilization, North China Electric Power University, Beijing 102206, China
  • Received:2018-07-18 Revised:2018-12-14 Online:2019-03-05 Published:2019-01-04
  • Contact: Jinliang XU E-mail:yanxin3.14@163.com;xjl@ncepu.edu.cn

摘要:

实验研究了超疏水表面上太阳能加热金纳米流体液滴蒸发特性。用高速摄像机和红外摄像机同步触发记录了2 μl不同浓度金纳米流体液滴在超疏水表面的蒸发过程。通过一系列实验,观察对比不同浓度金纳米流体液滴蒸发过程中体积、接触角、接触直径、液滴表面温度以及蒸发速率等动态特性。结合水蒸气扩散模型以及红外温度图分析液滴在超疏水表面上的蒸发过程中蒸发通量变化以及表面温度变化等特性。发现不同浓度纳米流体液滴蒸发速率基本一致;超疏水表面上液滴蒸发以常接触角模式为主,后期呈现混合模式蒸发;液滴蒸发过程中,液滴上半部分蒸发通量大,致使液滴表面温度较低。

关键词: 太阳能, 超疏水表面, 传质, 等离激元, 蒸发, 纳米流体

Abstract:

The evaporation characteristics of gold nanofluid by solar heated on superhydrophobic surfaces were investigated experimentally. The evaporation process of 2 μl gold nanofluid droplets on the superhydrophobic surface was recorded simultaneously by high-speed camera and IR camera. Through a series of experiments, the evaporation dynamic characteristics of volume, contact angle, contact diameter, droplet surface temperature and evaporation rate of gold nanofluid with different concentrations were studied. Combined with the water vapor diffusion model and the IR temperature distribution, the characteristics of evaporation flux and surface temperature change of droplets on the superhydrophobic surface were analyzed. It is found that the evaporation rates of nanofluid droplets with different concentrations are almost the same. The droplets evaporation on the super-hydrophobic surface is the normal contact angle mode, and the mixed evaporation mode occurs in the final stage. During the droplets evaporation process, the evaporation flux of the upper part of the droplets is large, resulting in the lower surface temperature.

Key words: solar energy, superhydrophobic surface, mass transfer, plasmonic, evaporation, nanofluid

中图分类号: 

  • TK 519

图1

实验系统图"

图2

金纳米颗粒与纳米流体表征"

图3

超疏水表面太阳能加热纳米流体液滴蒸发图"

图4

无量纲液滴体积随时间的变化曲线"

图5

无量纲液滴接触角随时间的变化曲线"

图6

无量纲液滴接触面直径随时间的变化曲线"

图7

超疏水表面太阳能加热纳米流体液滴蒸发红外温度分布"

图8

不同浓度纳米流体液滴单位照射投影面积蒸发速率随时间的变化"

1 叶有华, 彭少麟. 露水对植物的作用效应研究进展[J]. 生态学报, 2011, 31(11): 3190-3196.
YeY H, PengS L. Review of dew action effect on plants[J]. Acta Ecologica Sinica, 2011, 31(11): 3190-3196.
2 ChangS T, VelevO D. Evaporation-induced particle microseparations inside droplets floating on a chip[J]. Langmuir, 2006, 22(4): 1459-1468.
3 LimT, HanS, ChungJ, et al. Experimental study on spreading and evaporation of inkjet printed pico-liter droplet on a heated substrate[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 431-441.
4 余杨, 陈秀红, 张天顺, 等. 农药雾滴在烟叶叶面上蒸发时间的影响因素[J]. 农业工程学报, 2011, 27(11): 263-267.
YuY, ChenX H, ZhangT S, et al. Influence factors of evaporation time of pesticide droplets on different tobacco leaves[J]. Transactions of the CSAE, 2011, 27(11): 263-267.
5 ThokchomA K, ZhouQ, KimD, et al. Characterizing self-assembly and deposition behavior of nanoparticles in inkjet-printed evaporating droplets[J]. Sensors and Actuators B: Chemical, 2017, 252: 1063-1070.
6 KumariN, GarimellaS V. Characterization of the heat transfer accompanying electrowetting or gravity-induced droplet motion[J]. International Journal of Heat and Mass Transfer, 2011, 54(17/18): 4037-4050.
7 PicknettR G, BexonR. Evaporation of sessile or pendant drops in still air[J]. Journal of Colloid & Interface Science, 1977, 61(2): 336-350.
8 YuH, SoolamanD M, RoweA W, et al. Evaporation of water microdroplets on self-assembled monolayers: from pinning to shrinking[J]. ChemPhysChem, 2004, 5(7): 1035-1038.
9 FangX, PimentelM, SokolovJ, et al. Dewetting of the three-phase contact line on solids[J]. Langmuir, 2010, 26(11): 7682-7685.
10 高明, 孔鹏, 章立新. 恒热流条件下亲疏水表面液滴蒸发特性[J]. 化工学报, 2018, 69(7): 2979-2984.
GaoM, KongP, ZhangL X. The character of sessile droplets evaporation on hydrophilic and hydrophobic heating surface with constant heat fluxes[J]. CIESC Journal, 2018, 69(7): 2979-2984.
11 DeeganR D, BakajinO, DupontT F, et al. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature, 1997, 389(6653): 827-829.
12 HuH, LarsonR G. Marangoni effect reverses coffee-ring depositions[J]. The Journal of Physical Chemistry B, 2006, 110(14): 7090-7094.
13 WeonB M, JeJ H. Capillary force repels coffee-ring effect[J]. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., 2010, 82(1): 15305.
14 ErbilH Y, McHaleG, NewtonM I. Drop evaporation on solid surfaces: constant contact angle mode[J]. Langmuir, 2002, 18(7): 2636-2641.
15 HuH, LarsonR G. Evaporation of a sessile droplet on a substrate[J]. The Journal of Physical Chemistry B, 2002, 106(6): 1334-1344.
16 PopovY O. Evaporative deposition patterns: spatial dimensions of the deposit[J]. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., 2005, 71(3): 36313.
17 DunnG J, WilsonS K, DuffyB R, et al. The strong influence of substrate conductivity on droplet evaporation[J]. Journal of Fluid Mechanics, 2009, 623: 329.
18 DunnG J, WilsonS K, DuffyB R, et al. Evaporation of a thin droplet on a thin substrate with a high thermal resistance[J]. Physics of Fluids, 2009, 21(5): 181-336.
19 张凯, 王依霖, 徐学锋. 基底厚度对蒸发液滴表面温度分布的影响[J]. 化工学报, 2015, 66(2): 703-708.
ZhangK, WangY L, XuX F. Influence of substrate thickness on temperature distribution along surface of drying droplets [J]. CIESC Journal, 2015, 66(2): 703-708.
20 辛娟娟, 周致富, 辛慧, 等. 单个液滴蒸发模型中不同质量传递公式的有效性分析[J]. 化工学报, 2012, 63(6): 1704-1708.
XinJ J, ZhouZ F, XinH, et al. Validation analysis of different mass transfer formula in single droplet evaporation model[J]. CIESC Journal, 2012, 63(6): 1704-1708.
21 ZubkovV S, CossaliG E, ToniniS, et al. Mathematical modelling of heating and evaporation of a spheroidal droplet[J]. International Journal of Heat and Mass Transfer, 2017, 108: 2181-2190.
22 SobacB, BrutinD. Thermal effects of the substrate on water droplet evaporation[J]. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., 2012, 86(2): 21602.
23 CarleF, SobacB, BrutinD. Experimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation[J]. Applied Physics Letters, 2013, 102(6): 336-350.
24 CarleF, SemenovS, MedaleM, et al. Contribution of convective transport to evaporation of sessile droplets: empirical model[J]. International Journal of Thermal Sciences, 2016, 101: 35-47.
25 LewisN S. Research opportunities to advance solar energy utilization[J]. Science, 2016, 351(6271): d1920.
26 HanW, ByunM, LinZ. Assembling and positioning latex nanoparticles via controlled evaporative self-assembly[J]. Journal of Materials Chemistry, 2011, 21(42): 16968.
27 XueG, XuY, DingT, et al. Water-evaporation-induced electricity with nanostructured carbon materials[J]. Nature Nanotechnology, 2017, 12(4): 317-321.
28 WangX, HeY, LiuX, et al. Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation[J]. Solar Energy, 2017, 157: 35-46.
29 StauberJ M, WilsonS K, DuffyB R, et al. Evaporation of droplets on strongly hydrophobic substrates[J]. Langmuir, 2015, 31(12): 3653-3660.
30 DashS, GarimellaS V. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces[J]. Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., 2014, 89(4): 42402.
[1] 张光华, 董秋辰, 刘晶. 多苯环双子季铵盐在油水两相中的传质性能[J]. 化工学报, 2019, 70(S1): 61-68.
[2] 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78.
[3] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[4] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[5] 柴叶霞, 陈华艳, 贾悦, 李丹丹, 武春瑞, 吕晓龙. PVDF中空纤维换热管超疏水表面强化蒸气滴状冷凝传热[J]. 化工学报, 2019, 70(4): 1331-1339.
[6] 贾勇, 蒋进, 赵忍, 荣卫龙, 殷李国, 顾明言, 龙红明. 氨法烟气脱硫SO2吸收传质系数研究[J]. 化工学报, 2019, 70(4): 1367-1374.
[7] 张航, 翁建华, 崔晓钰. 吸湿性盐溶液振荡热管的传热特性研究[J]. 化工学报, 2019, 70(3): 874-882.
[8] 黄志甲, 罗良, 柯瑞, 卓飞飞, 钟亮. 亲水无纺布PVC复合规整填料除湿性能实验[J]. 化工学报, 2019, 70(3): 913-921.
[9] 常景彩, 王翔, 王鹏, 崔琳, 李军, 张鑫, 马春元. 静电场中极板表面液膜蒸发特性研究[J]. 化工学报, 2019, 70(3): 865-873.
[10] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
[11] 胡晨辉, 王亦飞, 包泽彬, 于广锁. 蒸发热水塔内固体颗粒对气泡运动的影响[J]. 化工学报, 2019, 70(1): 39-48.
[12] 汪力, 武卫东, 胡锟. 循环风量对新型家用纯净水机制冷系统及制水性能的影响[J]. 化工学报, 2019, 70(1): 99-106.
[13] 熊晓俊, 何婷, 林文胜. 利用常温压缩机处理LNG接收站BOG的工艺探讨[J]. 化工学报, 2018, 69(S2): 425-430.
[14] 谢艳琦, 诸凯, 王雅博. 冷冻条件对植物细胞低温保存的影响[J]. 化工学报, 2018, 69(S2): 200-204.
[15] 张鲁梦, 郭宪民, 薛杰. 翅片管换热器表面霜层生长特性的实验研究[J]. 化工学报, 2018, 69(S2): 186-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .