化工学报 ›› 2019, Vol. 70 ›› Issue (1): 39-48.doi: 10.11949/j.issn.0438-1157.20180697

• 流体力学与传递现象 • 上一篇    下一篇

蒸发热水塔内固体颗粒对气泡运动的影响

胡晨辉(),王亦飞(),包泽彬,于广锁   

  1. 华东理工大学洁净煤技术研究所,煤气化及能源化工教育部重点实验室,上海 200237
  • 收稿日期:2018-06-26 修回日期:2018-09-30 出版日期:2019-01-05 发布日期:2018-09-30
  • 通讯作者: 王亦飞 E-mail:18855587097@163.com;wangyf@ecust.edu.cn
  • 作者简介:胡晨辉(1993—),男,硕士研究生,<email>18855587097@163.com</email>|王亦飞(1970—),女,教授,<email>wangyf@ecust.edu.cn</email>
  • 基金资助:
    国家重点研发计划项目(2017YFB0602802)

Effect of solid particles in evaporative hot water tower on bubble movement

Chenhui HU(),Yifei WANG(),Zebin BAO,Guangsuo YU   

  1. Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, Institute of Clean Coal Technology, East China University of Science and Technology, Shanghai 200237, China
  • Received:2018-06-26 Revised:2018-09-30 Online:2019-01-05 Published:2018-09-30
  • Contact: Yifei WANG E-mail:18855587097@163.com;wangyf@ecust.edu.cn

摘要:

以蒸发热水塔为研究对象进行可视化实验,借助高速摄像机以及图像处理软件研究热水塔内单孔筛孔塔板上方单个气泡的运动周期及运动特性,孔径为3 mm,在蒸汽中加入不凝性气体N2和N2/固体颗粒的混合物,研究固体颗粒对气泡生成、破碎与过程的影响。实验结果表明:气泡整个生长周期包括生成区、上升区、破碎区。气泡长径比在生成区由大变小,在上升区先增大后减小,在破碎区增大趋势明显;气泡的等效半径在整个运动周期中一直增大,其中在生成区的增大速度最快;生成区气泡的Y向运动速率呈现增大趋势,上升区以及破碎区气泡的上升速率平稳波动。当N2带入煤粉颗粒后,发现气泡的上升区时间比例大大降低,破碎区的占比增加明显,有利于塔内的热质传递。

关键词: 塔器, 气泡运动, 可视化实验, 固体颗粒, 传热, 传质

Abstract:

The evaporative hot water tower was used as the research object for visualization experiments. The high-speed camera and image processing software were used to study the motion period and characteristics of a single bubble above the single-hole sieve tray in the hot water tower. The aperture was 3 mm. In the experiment process, non-condensable properties were added to the steam. A mixture of gaseous N2 and N2/solid particles was used to study the effect of solid particles on bubble formation, fragmentation and processes. The results show that the entire growth cycle of the bubble includes the formation zone, the rising zone and the crushing zone. The ratio of the bubble length to diameter decreases from large to small in the formation zone, increases first and then decreases in the rising zone, and increases in the crushing zone. The equivalent radius of the bubble increases throughout the entire cycle of motion, with the highest growth rate in the formation zone. The Y-movement rate of bubbles in the formation zone shows an increasing trend, and the rising rate of bubbles in the rising zone and the crushing zone fluctuates smoothly. When N2 was introduced into the pulverized coal particles, it was found that the proportion of the rise time of the bubbles was greatly reduced, and the proportion of the crushing zone increased significantly, which was conducive to the transfer of heat within the tower.

Key words: column, bubble motion, visual experiment, solid particle, heat transfer, mass transfer

中图分类号: 

  • TQ 026.2

图1

实验装置流程"

表1

塔体参数"

Parameter Value
tower height/mm 2070
tower inner diameter/mm 100
tower external diameter/mm 110
number of tray 1

图2

高速相机捕捉到的气泡形态"

图3

气泡的等效半径和长径比随时间的变化"

图4

气泡形心上升速度随时间的变化"

图5

气泡的等效半径和长径比随时间的变化(N2流量2 L·min-1)"

图6

气泡的等效半径和长径比随时间的变化(N2流量4 L·min-1)"

图7

气泡的等效半径和长径比随时间的变化(N2流量6 L·min-1)"

图8

气泡的等效半径和长径比随时间的变化 (蒸汽流量2 kg·h-1)"

图9

气泡的等效半径和长径比随时间的变化(蒸汽流量3 kg·h-1)"

图10

不同蒸汽氮气比得到的气泡的等效半径和长径比变化"

表2

实验条件"

Number Steam flow/(kg·h-1) Nitrogen flow/(kg·h-1) α
a 3 0.15 20
b 2 0.15 13.33
c 3 0.3 10
d 3 0.45 6.66
e 2 0.45 4.44
1 Bergman T L , Incropera F P , Lavine A S . Fundamentals of Heat and Mass Transfer[M]. 7th ed. New York: John Wiley & Sons Inc, 2011: 673-675.
2 于广锁, 牛苗任, 王亦飞, 等 . 气流床煤气化的技术现状和发展趋势[J]. 现代化工, 2004, 24(5): 23-26.
Yu G S , Niu M R , Wang Y F , et al . Application status and development tendency of coal entrained-bed gasification[J]. Modern Chemical Industry, 2004, 24(5): 23-26.
3 金建国, 任吉堂, 陈连生, 等 . 引入固体颗粒强化膜态沸腾换热的机理分析[J]. 工程热物理学报, 2006, 27(5): 820-822.
Jing J G , Ren J T , Chen L S , et al . Mechanism analysis of enhanced boiling heat transfer by solid particles[J]. Journal of Engineering Thermophysics, 2006, 27(5): 820-822.
4 屈晓航, 田茂诚, 张冠敏, 等 . 含不凝气体蒸汽泡直接接触冷凝[J]. 化工学报, 2014, 65(12): 4749-4754.
Qu X H , Tian M C , Zhang G M , et al . Direct contact condensation of steam bubbles with non-condensable gas[J]. CIESC Journal, 2014, 65(12): 4749-4754.
5 Mochizuki T , Sato H , Mori Y H . Multi-angle observation scheme for bubbles and droplets[J]. Journal of Visualization, 2012, 15(2): 125-137.
6 Robin T T , Snyder N W . Theoretical analysis of bubble dynamics for an artificially produced vapor bubble in a turbulent stream[J]. International Journal of Heat and Mass Transfer, 1970, 13(3): 523-536.
7 刘军云, 王辉涛, 王华, 等 . 直接接触换热器中分散相单个气泡的传热机理研究[J]. 昆明理工大学学报 (自然科学版), 2012, (2): 55-59.
Liu J Y , Wang H T , Wang H , et al . Heat transfer mechanism of a single dispersed phase of bubbles in direct contact heat transfer[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2012, (2): 55-59.
8 Kamei S , Hirata M . Condensing phenomena of a single vapor bubble into subcooled water[J]. Experimental Heat Transfer, 1987, 3(2): 173-182.
9 Harada T , Nagakura H , Okawa T . Dependence of bubble behavior in subcooled boiling on surface wettability[J]. Nuclear Engineering and Design, 2010, 240(12): 3949-3955.
10 马超, 薄涵亮 . 单气泡破裂产生膜液滴空间分布实验研究[J]. 原子能科学技术, 2015, 49(10): 1766-1771.
Ma C , Bo H L . Experimental study on the spatial distribution of droplets produced by single bubble rupture[J]. Atomic Energy Science and Technology, 2015, 49(10): 1766-1771.
11 Hsieh C C , Wang S B , Pan C . Dynamic visualization of two-phase flow patterns in a natural circulation loop[J]. International Journal of Multiphase Flow, 1997, 23(6): 1147-1169.
12 Morita K , Matsumoto T , Fukuda K , et al . Experimental verification of the fast reactor safety analysis code SIMMER-Ⅲ for transient bubble behavior with condensation[J]. Nuclear Engineering and Design, 2008, 238(1): 49-56.
13 Suzuki T , Tobita Y , Yamano H , et al . Development of multicomponent vaporization/condensation model for a reactor safety analysis code SIMMER-Ⅲ: extended verification using multi-bubble condensation experiment[J]. Nuclear Engineering and Design, 2003, 220(3): 240-254.
14 Deandres M C , Hoo E , Zangrando F . Performance of direct-contact heat and mass exchangers with steam-gas mixtures at subatmospheric pressures[J]. International Journal of Heat and Mass Transfer, 1996, 39(5): 965-973.
15 李少白 . 非牛顿流体中气泡运动及传质的研究[D]. 天津: 天津大学, 2011.
Li S B . Study on bubble motion and mass transfer in non-Newtonian fluids[D]. Tianjin: Tianjin University, 2011.
16 Genid S B . Direct-contact condensation heat transfer on downcommerless trays for steam-water system[J]. International Journal of Heat and Mass Transfer, 2006, 49(7): 1225-1230.
17 Genid S B , Jadimovic B M , Vladic L A . Heat transfer rate of direct-contact condensation on baffle trays[J]. International Journal of Heat and Mass Transfer, 2008, 51(25/26): 5772-5776.
18 袁惠新, 鲁娣, 等 . 气泡与颗粒在流场中的碰撞聚集和破碎[J]. 过滤与分离, 2008, 3(4): 12-15.
Yuan H X , Lu D , et al . Collision and aggregation of air bubbles and particles in the flow field[J]. Journal of Filtration & Separation, 2008, 3(4): 12-15.
19 Cheng P , Wang G , Quan X . Recent work on boiling and condensation in microchannels[J]. Journal of Heat Transfer, 2009, 131(4): 569-574.
20 Clerx N , van der Geld C W M . Experimental and analytical study of intermittency in direct contact condensation of steam in a cross-flow of water[C]//Proceedings of ECI International Conference on Boiling Heat Transfer. Florianopolis, Brazil. 2009: 1-8.
21 Gulawani S S , Joshi J B , Shah M S , et al . CFD analysis of flow pattern and heat transfer in direct contact steam condensation[J]. Chemical Engineering Science, 2006, 61(16): 5204-5220.
22 Pan L , Tan Z , Chen D , et al . Numerical investigation of vapor bubble condensation characteristics of subcooled flow boiling in vertical rectangular channel[J]. Nuclear Engineering and Design, 2012, 248(1): 126-136.
23 Sachin K , Dahikar S K , Sathe M J , et al . Investigation of flow and temperature patterns in direct contact condensation using PIV, PLIF and CFD[J]. Chemical Engineering Science, 2010, 65(16): 4606-4620.
24 Jiang B , Liu P , Zhang L , et al . Hydrodynamics and mass-transfer analysis of a distillation ripple tray by computational fluid dynamics simulation[J]. Industrial & Engineering Chemistry Research, 2013, 52(49): 17618-17626.
25 Tian W , Ishiwatari Y , Ikejiri S , et al . Numerical simulation on direct contact condensation of single bubble in subcooled water using MPS method[C]//International Symposium on Multiphase Flow Heat Mass Transfer and Energy Conversion,2010, 1207(1): 933-938.
26 Zeng Q , Cai J . Three-dimension simulation of bubble behavior under nonlinear oscillation[J]. Annals of Nuclear Energy, 2014, 63(1): 680-690.
27 Chen Y M , Mayinger F . Measurement of heat transfer at the phase interface of condensing bubbles[J]. International Journal of Multiphase Flow, 1992, 18(6): 877-890.
28 Warrier G R , Basu N , Dhir V K . Interfacial heat transfer during subcooled flow boiling[J]. International Journal of Heat and Mass Transfer, 2002, 45(19): 3947-3959.
29 Pan L , Tan Z , Chen D , et al . Numerical investigation of vapor bubble condensation characteristics of subcooled flow boiling in vertical rectangular channel[J]. Nuclear Engineering and Design, 2012, 248(1): 126-136.
30 马亮 . 浮选过程中含钙矿物颗粒与气泡的相互作用研究[D]. 长沙: 中南大学, 2011.
Ma L . Study on the interaction between calcium-containing mineral particles and bubbles during flotation[D]. Changsha: Central South University, 2011.
[1] 张光华, 董秋辰, 刘晶. 多苯环双子季铵盐在油水两相中的传质性能[J]. 化工学报, 2019, 70(S1): 61-68.
[2] 单思宇, 谭宏博. 基于扁管的蒸发式冷凝器管外传热传质特性研究[J]. 化工学报, 2019, 70(S1): 69-78.
[3] 李哲, 王文龙, 张梦, 孙静, 毛岩鹏, 赵希强, 宋占龙. 碳纳米管材料低频电磁参数及吸波产热特性[J]. 化工学报, 2019, 70(S1): 28-34.
[4] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[5] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[6] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[7] 颜建国, 朱凤岭, 郭鹏程, 罗兴锜. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787.
[8] 杨俊兰, 宁淑英. 紧凑通道内CO2/润滑油混合物沸腾换热特性研究[J]. 化工学报, 2019, 70(5): 1772-1778.
[9] 柴叶霞, 陈华艳, 贾悦, 李丹丹, 武春瑞, 吕晓龙. PVDF中空纤维换热管超疏水表面强化蒸气滴状冷凝传热[J]. 化工学报, 2019, 70(4): 1331-1339.
[10] 陈曦, 林毅, 邵帅. 倾角及加热功率对乙烷脉动热管传热性能的影响[J]. 化工学报, 2019, 70(4): 1383-1389.
[11] 贾勇, 蒋进, 赵忍, 荣卫龙, 殷李国, 顾明言, 龙红明. 氨法烟气脱硫SO2吸收传质系数研究[J]. 化工学报, 2019, 70(4): 1367-1374.
[12] 朱兵国, 吴新明, 张良, 孙恩慧, 张海松, 徐进良. 垂直上升管内超临界CO2 流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290.
[13] 朱明汉, 白鹏飞, 胡艳鑫, 黄金. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357.
[14] 施素丽, 鹿院卫, 于强, 吴玉庭. 熔盐单罐释热过程换热器取热方式优选[J]. 化工学报, 2019, 70(3): 857-864.
[15] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .