化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1605-1613.doi: 10.11949/j.issn.0438-1157.20180691

• 能源和环境工程 • 上一篇    下一篇

无霜空气源热泵系统冬季除湿性能初步实验

邱君君(),张小松(),李玮豪   

  1. 东南大学能源与环境学院,江苏 南京 210096
  • 收稿日期:2018-06-26 修回日期:2019-01-24 出版日期:2019-04-05 发布日期:2019-04-17
  • 通讯作者: 张小松 E-mail:1103519754@qq.com;rachpe@seu.edu.cn
  • 作者简介:<named-content content-type="corresp-name">邱君君</named-content>(1993—),男,硕士研究生,<email>1103519754@qq.com</email>|张小松(1960—),男,博士,教授,<email>rachpe@seu.edu.cn</email>
  • 基金资助:
    国家自然科学国际合作基金项目(51520105009)

Experimental research on a novel frost-free air source heat pump system

Junjun QIU(),Xiaosong ZHANG(),Weihao LI   

  1. School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2018-06-26 Revised:2019-01-24 Online:2019-04-05 Published:2019-04-17
  • Contact: Xiaosong ZHANG E-mail:1103519754@qq.com;rachpe@seu.edu.cn

摘要:

通过对比现有的空气源热泵空调系统的优缺点,提出了一种新型无霜空气源热泵空调系统。该热泵系统最大的新颖之处在于热交换塔实现了“一塔三用”,不仅冬季可以无霜高效运行与再生,夏季蒸发冷却后性能也有所提升。通过搭建该系统实验平台研究了溶液塔入口空气温湿度、空气流量、溶液入口温度、溶液流量、溶液质量分数对除湿性能及空气出口温度与溶液出口温度的影响,结果表明:出口空气与溶液温度随入口空气温湿度、流量、溶液温度、质量分数的升高,溶液流量的下降而升高;溶液塔的除湿效率主要受风量和溶液流量的影响,而入口空气温湿度、入口溶液温度、溶液质量分数影响很小,溶液塔的除湿量随着室外空气湿度的升高、入口溶液温度的降低、空气流量和溶液流量的升高而升高。

关键词: 无霜, 实验验证, 除湿, 空气源热泵

Abstract:

By comparing the advantages and disadvantages of the existing air source heat pump air conditioning system, a new type of frost-free air source heat pump air conditioning system is proposed. The biggest novelty of this heat pump system is that the heat exchange tower has realized as "one tower in three uses", which can not only run and regenerate effectively without frost in winter, but also improve the performance after evaporative cooling in summer. Through constructing the heat pump system platform, the effects of ambient temperature, humidity, air volume flow rate, inlet solution temperature, solution volume flow rate and solution concentration on dehumidification performance, outlet air and solution temperature are studied. It is concluded that the outlet air and solution temperature increase with the increase of inlet air temperature, humidity, volume flow rate, solution temperature and the decrease of solution volume flow rate. As inlet air temperature rises from -4℃ to 2.5℃, the air outlet temperature increased by 3.32℃, solution tower export solution temperature increased by 1.62℃. As the rise of the solution tower entrance solution temperature, air outlet temperature increased by 1.9℃, export solution temperature increased by 2.66℃. Dehumidification efficiency is mainly affected by air and solution volume flow rate. The inlet air temperature and humidity, solution temperature and solution concentration affect it little, the dehumidification rate increases with higher outdoor air humidity, air volume flow rate, solution volume flow rate and lower solution temperature.

Key words: non-frost, experimental validation, dehumidification, air source heat pump

中图分类号: 

  • TU 831.6

图1

无霜空气源热泵实验装置"

图2

新型空气源热泵夏季实验测点布置"

图3

新型空气源热泵冬季实验测点布置"

表1

测量设备详细参数"

测量参数 工具编号 测量精度
水温与制冷剂温度 WZPK-163S ±0.1℃
空气温湿度 HMT120 ±1%
压力 MPM480 ±1%
流量 LWY-15E ±1%
功率 WT310 ±1%

表2

空气及溶液入口参数"

参数 范围 基准
入口空气温度/℃ -4~2.5 2.5
入口空气湿度/(g/(kg dry air)) 2~2.35 2
空气体积流量/(m3/h) 392~1241 1241
入口溶液温度/℃ -7~-3 -7
溶液体积流量/(m3/h) 0.27~0.94 0.94
溶液质量分数 0.25~0.35 0.25

图4

溶液塔入口空气温度对溶液塔出口空气及出口溶液温度的影响"

图5

溶液塔入口空气湿度对溶液塔出口空气及出口溶液温度的影响"

图6

溶液塔空气流量对溶液塔出口空气及出口溶液温度的影响"

图7

溶液塔入口溶液温度对溶液塔出口空气及出口溶液温度的影响"

图8

溶液塔溶液流量对溶液塔出口空气及出口溶液温度的影响"

图9

溶液塔溶液质量分数对溶液塔出口空气及出口溶液温度的影响"

图10

溶液塔入口空气温度对除湿量及除湿效率的影响"

图11

溶液塔入口空气湿度对除湿量及除湿效率的影响"

图12

溶液塔空气流量对除湿量及除湿效率的影响"

图13

溶液塔入口溶液温度对除湿量及除湿效率的影响"

图14

溶液塔溶液流量对除湿量及除湿效率的影响"

图15

溶液塔溶液质量分数对除湿量及除湿效率的影响"

1 Nishimura T . “Heat pumps status and trends” in Asia and the Pacific[J]. International Journal of Refrigeration, 2002, 25(4): 405-413.
2 Stoecker W F . How frost formation on coils affects refrigeration systems[J]. Refrigeration Engineering, 1957, 65(2): 42-46.
3 Barrow H . A note on frosting of heat pump evaporator surfaces[J]. Heat Recovery System, 1985, 5(3): 195-201.
4 Yao Y , Jiang Y Q , Deng S M .et al. A study on the performance on the airside heat exchanger under frosting in air-source heat pump water heater/chiller unit[J]. International Journal of Heat and Mass Transfer, 2004, 47(17/18): 3745-3756.
5 王峰, 梁彩华, 张小松 . 超疏水翅片表面的抑霜机理及除霜特性[J]. 工程热物理学报, 2016, (5): 1066-1070.
Wang F , Liang C H , Zhang X S . Frost inhibition mechanism and defrosting characteristics of ultrahydrophobic fin surfaces[J]. Journal of Engineering Thermophysics, 2016, (5): 1066-1070.
6 王峰, 梁彩华, 吴春晓, 等 . 疏水铝翅片表面的结霜/融霜特性[J]. 中南大学学报(自然科学版), 2016, (4): 1368-1373.
Wang F , Liang C H , Wu C X , et al . Frosting/defrosting characteristics of hydrophobic aluminum fin surfaces [J]. Journal of Central South University(Science and Technology), 2016, (4): 1368-1373.
7 Wang F , Liang C H , Yang M T , et al . Preliminary study of a novel defrosting method for air source heat pumps based on superhydrophobic fin [J]. Applied Thermal Engineering, 2016, (107): 479-492.
8 张又升, 赵敬德, 王金龙 .空气源热泵室外换热器翅片管的融霜过程分析[J]. 流体机械, 2016, (6): 66-71.
Zhang Y S , Zhao J D , Wang J L . Analysis on defrosting process of fin tube of air source heat pump outdoor heat exchanger[J]. Fluid Machinery, 2016, (6): 66-71.
9 Kim J , Choi H J , Kim K C . A combined dual hot-gas bypass defrosting method with accumulator heater for an air-to-air heat pump in cold region[J]. Applied Energy, 2015, 147: 344 -352.
10 谭海辉, 陶唐飞, 徐光华, 等 . 翅片管式蒸发器超声波除霜理论与技术研究[J]. 西安交通大学学报, 2015, (9): 105-113.
Tan H H , Tao T F , Xu G H , et al . Study on ultrasonic defrosting theory and technology of finned tube evaporator[J]. Journal of Xi’an Jiaotong University, 2015, (9): 105-113.
11 Tan H H , Xu G G , Tao T F , et al . Investigation on the ultrasonic propagation mechanism and its application on air-source heat pump defrosting[J]. Applied Thermal Engineering, 2016, 107: 479-492.
12 孙家正 . 空气源热泵除霜方法的研究现状及展望[J]. 建筑热能通风空调, 2017, 36(8): 42-46.
Sun J Z . Present state and prospect of defrosting method for air source heat pump[J]. Building Energy & Environment, 2017, 36(8): 42-46.
13 韩志涛, 姚杨, 马最良, 等 . 空气源热泵误除霜特性的实验研究[J]. 暖通空调, 2006, 36(2): 15-19.
Han Z T , Yao Y , Ma Z L , et al . Experiment on characteristics of an air source heat pump in false defrosting[J]. Heating Ventilation & Air Conditioning, 2006, 36(2): 15-19.
14 张杰, 兰菁, 杜瑞环, 等 . 几种空气源热泵除霜方式的性能比较[J]. 制冷学报, 2012, 33(2): 47-49.
Zhang J , Lan J , Du R H , et al . The performance comparison of several defrosting modes for air-source heat pump[J]. Journal of Refrigeration, 2012, 33(2): 47-49.
15 曹小林, 曹双俊, 段飞, 等 . 空气源热泵除霜问题研究现状与展望[J]. 流体机械, 2011, 39(4): 75-79.
Cao X L , Cao S J , Duan F , et al . Current situation and development prospect of air source heat pump defrosting research[J]. Fluid Machinery, 2011, 39(4): 75-79.
16 李九如, 孔祥鹏, 王妍, 等 . 空气源热泵除霜动态特性实验台研制[J]. 哈尔滨理工大学学报, 2012, 17(5): 26-28.
Li J R , Kong X P , Wang Y , et al . Development of air source heat pump defrosting structures bench[J]. Journal of Harbin University of Science and Technology, 2012, 17(5): 26-28.
17 龚建英, 袁秀玲 . 空气源热泵蒸发器结霜过程数值模拟[J]. 低温与超导, 2010, 38(5): 53-57.
Gong J Y , Yuan X L . Simulation study on evaporator frosting process of air source heat pump[J]. Cryogenics & Superconductivity, 2010, 38(5): 53-57.
18 郭宪民, 王冬丽, 陈轶光, 等 . 室外换热器迎面风速对空气源热泵结霜特性的影响[J]. 化工学报, 2012, 63(S2): 32-37.
Guo X M , Wang D L , Chen Y G , et al . Effects of face velocity of outdoor heat exchanger on frosting characteristics of air source heat pump system[J]. CIESC Journal , 2012, 63(S2): 32-37.
19 尹从绪, 陈轶光 . 风速对空气源热泵翅片管换热器结霜特性影响[J]. 低温与超导, 2011, 39(12): 50-52.
Yin C X , Chen Y G . The effects of wind speed on frosting characteristics of fin-tube heat exchanger for air source heat pump[J]. Cryogenics & Superconductivity, 2011, 39(12): 50-52.
20 汪峰, 梁彩华, 杨明涛, 等 . 翅片表面融霜水滞留机理及其影响因素[J]. 化工学报, 2014, 65(S2): 101-106.
Wang F , Liang C H , Yang M T , et al . Mechanism and influence factors of frost melt water retention on fins[J]. CIESC Journal, 2014, 65(S2): 101-106.
21 薛利平, 郭宪民, 邢震 . 环境参数对翅片管换热器表面结霜特性影响的实验研究[J]. 低温与超导, 2017, 45(4): 66-71.
Xue L P , Guo X M , Xing Z . Experimental study on frost growth characteristics on surface of finned-tube heat exchanger[J]. Cryogenics & Superconductivity, 2017, 45(4): 66-71.
22 黄东, 袁秀玲 . 风冷热泵冷热水机组热气旁通除霜与逆循环除霜性能对比[J]. 西安交通大学学报, 2006, 40(5): 539-543.
Huang D , Yuan X L . Comparison of dynamic characteristics between the hot-gas bypass defrosting method and reverse-cycle defrosting method on an air-to-water heat pump[J]. Journal of Xi’an Jiaotong University, 2006, 40(5): 539-543.
23 马素霞, 蒋永明, 温波, 等 . 相变蓄热式蒸发空气源热泵性能的实验研究[J]. 太阳能学报, 2015, (3): 604-609.
Ma S X , Jiang Y M , Wen B , et al . Experimental study on the performance of phase change heat storage evaporative air source heat pump [J]. Journal of Solar Energy, 2015, (3): 604-609.
24 Zhang L , Fujinawa T , Saikawa M . A new method for preventing air-source heat pump water heaters from frosting[J]. International Journal of Refrigeration, 2012, 35(5): 1327-1334.
25 Wang Z H , Zheng Y X , Wang F H . Experimental analysis on a novel frost-free air-source heat pump water heater system[J]. Applied Thermal Engineering, 2014, 70: 808-816.
26 Wang Z H , Wang F H , Zheng Y X . Experimental study on a new type of frost-free air source heat pump water heater [J]. Journal of Refrigeration, 2015, 36(1): 52-58.
27 Wang Z H , Wang F H , Ma Z J . Numerical study on the operating performances of a novel frost-free air-source heat pump unit using three different types of refrigerant[J]. Applied Thermal Engineering, 2017, 112: 248-258.
28 梁明坤, 陈传宝, 刘伟 . 板式蒸发冷凝气源热泵的无霜加热试验与验证[J]. 机械制造与自动化(机械制造与自动化), 2016, 45(6): 70-73.
Liang M K , Chen C B , Liu W . Test & verification of frostless heating of plate-type evaporation-condensation air-source heat pump[J]. Machinery Manufacturing & Automation, 2016, 45(6): 70-73.
29 Jiang Y Q , Fu H Y , Yao Y . Experimental study on concentration change of spray solution used for a novel non-frosting air source heat pump system[J]. Energy and Buildings, 2014, 68: 707-712.
30 Su W , Zhang X S . Performance analysis of a novel frost-free air-source heat pump with integrated membrane-based liquid desiccant dehumidification and humidification [J]. Energy and Buildings, 2017, 145: 293-303.
[1] 支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
[2] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[3] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[4] 段继海, 黄帅彪, 高昶, 陈阿强, 黄青山. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831.
[5] 朱明汉, 白鹏飞, 胡艳鑫, 黄金. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357.
[6] 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308.
[7] 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
[8] 穆瑞, 乐高杨, 杨慧中. 基于O3/UV法在线COD检测的气体溶解量估计方法[J]. 化工学报, 2019, 70(2): 730-735.
[9] 汪力, 武卫东, 胡锟. 循环风量对新型家用纯净水机制冷系统及制水性能的影响[J]. 化工学报, 2019, 70(1): 99-106.
[10] 陆繁莉, 葛天舒, 代彦军, 王如竹. 新型半解耦式除湿热泵系统的降温除湿性能[J]. 化工学报, 2018, 69(S2): 55-60.
[11] 秦天怡, 石玉美. 低温液体无损储存数学模型的修正和验证[J]. 化工学报, 2018, 69(S2): 89-94.
[12] 邹臣堡, 冉小鹏, 翟晓强, 骆琼. 补气增焓热泵机组在供热工况下的噪声特性[J]. 化工学报, 2018, 69(S2): 109-115.
[13] 牛建会, 许树学, 刘帅领, 马国远. 带毛细管的变频压缩机空气源热泵实验研究[J]. 化工学报, 2018, 69(S2): 180-185.
[14] 李敏霞, 李昱翰, 马一太, 王派, 王飞波, 詹浩淼. 小型低温空气源热泵用转子和涡旋压缩机对比[J]. 化工学报, 2018, 69(S2): 379-387.
[15] 王沐, 殷勇高, 郭枭爽, 陈婷婷. 经济型多元溶液的替代方案及除湿再生性能验证[J]. 化工学报, 2018, 69(S2): 420-424.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .