化工学报 ›› 2019, Vol. 70 ›› Issue (3): 1035-1041.doi: 10.11949/j.issn.0438-1157.20180662

• 表面与界面工程 • 上一篇    下一篇

铝电解槽干式防渗料在电解过程中的反应机理探讨

王耀武(),彭建平,狄跃忠,蒿鹏程   

  1. 东北大学冶金学院,辽宁 沈阳 110819
  • 收稿日期:2018-06-19 修回日期:2018-12-13 出版日期:2019-03-05 发布日期:2018-12-26
  • 通讯作者: 王耀武 E-mail:wangyw@smm.neu.edu.cn
  • 作者简介:通信作者:王耀武(1980—),男,博士,副教授,<email>wangyw@smm.neu.edu.cn</email>
  • 基金资助:
    国家重点研发计划项目(2018YFC1901905);国家自然科学基金项目(51434005);中央高校基本科研业务费项目(N162502002)

Mechanism of deterioration for dry barrier material in aluminum electrolysis cells

Yaowu WANG(),Jianping PENG,Yuezhong DI,Pengcheng HAO   

  1. School of Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China
  • Received:2018-06-19 Revised:2018-12-13 Online:2019-03-05 Published:2018-12-26
  • Contact: Yaowu WANG E-mail:wangyw@smm.neu.edu.cn

摘要:

通过对大修铝电解槽中废防渗料的成分和物相组成进行分析,探讨了干式防渗料与电解质的反应机理。研究结果表明,渗透电解质中的NaF和冰晶石均会与干式防渗料反应生成霞石(NaAlSiO4)玻璃体层,可起到防止电解质进一步向下渗透的作用。但随着渗透电解质的增加,冰晶石会继续与霞石反应生成β氧化铝,β氧化铝层不具有防渗作用,这是导致防渗料中电解质继续渗透的主要原因之一。渗透电解质与防渗料反应还可生成SiF4气体,使硅元素向防渗料下部迁移,导致废防渗料上层硅元素含量降低。

关键词: 干式防渗料, 铝电解槽, 化学反应, 相变, 氧化铝

Abstract:

A component analysis and an X-ray phase analysis of spent dry barrier material were used to reveal the mechanism of deterioration for dry barrier material in aluminum electrolysis cells. The results show that both NaF and cryolite in the osmotic electrolyte react with the dry anti-seepage material to form a glass matrix of nepheline (NaAlSiO4), which can prevent the electrolyte from further penetrating downward. The Na3AlF6 continuously penetrating from the carbon cathode can react with the nephelite to form β-Al2O3, and the formation of β-Al2O3 is one major cause for deterioration of dry barrier materials. It can also produce SiF4 gas in the process of electrolyte reacts with dry barrier, which makes the silicon migrate to the lower part and results in the decrease of silicon in the upper layer.

Key words: dry barrier, aluminum electrolytic cells, chemical reaction, phase change, alumina

中图分类号: 

  • TF 803.21

图1

铝电解槽废防渗料的XRD谱图"

表1

干式防渗料原料及废防渗料的平均成分"

Element Dry barrier/%(mass) Spent dry barrier/%(mass)
Al 18.49 16.6
Si 25.02 12.36
Na 0.10 23.55
F 0 8.00
Ca 1.14 1.98
Fe 2.40 3.59
K 2.05 1.36

图2

废防渗料的照片"

图3

防渗料上层黄色物质的XRD谱图"

图4

各层防渗料的XRD谱图"

表2

不同层的废防渗料的成分"

Sample number Element content/%(mass)
Al Si Na F Ca TFe K
dry barrier 18.49 25.02 0.10 0.00 1.14 2.40 2.05
1 22.78 3.66 21.07 18.00 2.37 0.60 0.37
2 21.18 6.82 22.51 19.28 2.46 1.66 0.25
3 13.14 21.52 16.91 1.89 1.40 2.04 1.07
4 12.98 21.06 16.27 0.72 1.16 2.96 1.23
5 15.46 27.15 2.32 0.085 1.20 2.48 1.35

图5

NaF-AlF3二元相图"

图6

废防渗料上层的面扫描图"

1 王再云, 肖亚明, 张凤炳 .干式防渗透料在铝电解槽上应用的工业试验[J]. 有色冶金节能, 1999, (4): 25-29.
Wang Z Y , Xiao Y M , Zhang F B . Industrial test of dry antipermeate coating applied in aluminium electrolytic cell[J]. Energy Saving of Non-Ferrous Metallurgy, 1999, (4): 25-29.
2 包生重, 柴登鹏, 李晓星, 等 . 含钾盐电解质对干式防渗料渗透的试验研究[J]. 轻金属, 2017, (6): 28-32.
Bao S C , Chai D P , Li X X , et al . Research on penetration of electrolyte containing potassium salts into dry barrier materials[J]. Light Metals. 2017, (6): 28-32.
3 Jeltsch R , Chen C . Dry barrier mix in reduction cell cathodes[C]//Carlos E. Suarez. Light Metals. San Diego, USA: John Wiley & Sons Inc, 2012: 1259-1263.
4 Morten S , A Φ Harald . Cathodes in Aluminum Electrolysis[M]//Dusseldorf: Aluminum-Verlag Marketing & Kommunikation GmbH, 2010: 70-72.
5 刘世英, 石忠宁, 任必军, 等 . 铝电解槽用干防渗料的导热性与抗渗性[J]. 中国有色金属学报, 2006, 16(9): 1641-1645.
Liu S S , Shi Z N , Ren B J , et al . Thermal conduction and anti-penetration of dry barrier powder materials for aluminium electrolytic cells[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(9): 1641-1645.
6 杨贵海, 董建雄, 孙喜喜, 等 . 干式防渗料在70 kA自焙槽上的应用[J]. 轻金属, 2003, (7): 30-33.
Yang G H , Dong J X , Sun X X , et al . Applied of dry barrier in 70 kA aluminum electrolytic cell[J]. Light Metals, 2003, (7): 30-33.
7 Pelletier R , Allaire C , Siljan O J , et al . The corrosion of potlining refractories: a unified approach[J]. JOM, 2001, 53(8): 18-22.
8 Schöning C , Grande T , Siljan O J . Cathode refractory materials for aluminum reduction cells[C]//C. Edward Eckert. Light Metals. San Diego, USA: John Wiley & Sons Inc, 1999: 231.
9 Rutlin J , Grande T . Fluoride attack on alumino-silicate refractories in aluminium electrolysis cells[C]// Huglen R. Light Metals. Warrendale, USA: John Wiley & Sons Inc, 1997: 295-301.
10 Brunk F . Corrosion and Behaviour of Fireclay Bricks of Varying Chemical Composition Used in the Bottom Lining of Reduction Cells[C]// Mannweiler U. Light Metals. Warrendale, USA: John Wiley & Sons Inc, 1994: 834-838.
11 Dolejš D , Baker D R . Thermodynamic modeling of melts in the system Na2O-NaAlO2-SiO2-F2O[J]. Geochimical at Cosmochimica Acta, 2005, 69(23): 5537-5556.
12 Siljan O J , Junge O , Svendsen T , et al . Experiences with dry barrier powder materials in aluminium electrolysis cells[M]// Light Metals. Warrendale, USA: John Wiley & Sons Inc, 1998: 573-581.
13 Lambotte G , Chartrand P . Thermodynamic modeling of the (Al2O3+Na2O), (Al2O3+Na2O+SiO2), and (Al2O3+Na2O+AlF3+NaF) systems[J]. The Journal of Chemical Thermodynamics, 2013, 57(2): 306-334.
14 姚巍, 杨贵海, 高升志, 等 . 再论干式防渗料在铝电解槽上的应用[C]//中国有色金属学会. 提高铝电解槽使用寿命学术研讨会论文集. 河南 伊川: 中国有色金属学会, 2004: 90-95.
Yao W , Yang G H , Gao S Z , et al . Further discussion on dry barrier applied in aluminium electrolytic cell[C] //The Nonferrous Metals Society of China. Proceedings of improving the service life of aluminum reduction cells. Henan Yichuan: The Nonferrous Metals Society of China, 2004: 90-95.
15 吕任敏, 于海东, 张灿辉, 等 . 铝电解槽用干式防渗料[J]. 耐火材料. 2002,36(增刊): 73-79.
Lyu R M , Yu H D , Zhang C H , et al . Dry barrier for aluminum electrolytic cell[J]. Refractory Materials, 2002,36(Suppl.): 73-79.
16 吴斌, 赵义, 王落霞, 等 . 电解槽用抗渗透砖的研制[J]. 轻金属, 2014, (5): 28-31.
Wu B , Zhao Y , Wang L X , et al . Development of the barrier brick used in aluminum reduction pots[J]. Light Metals, 2014, (5): 28-31.
17 Neff D V . Clayburn dri-barrier mix its application as a barrier lining in reduction cells[C]//Carlos E. Suarez. Light Metals. San Antonio, USA: John Wiley & Sons, Inc. 2013: 266-292.
18 Bittencourt L R , Bonadia P , Valenzuela F A O . Aluminosilicate refractories for aluminum cell linings[J]. American Ceramic Society Bulletin. 2005, 84(2): 26-31.
19 Allaire C . Refractory lining for alumina electrolytic cells[J]. Journal of the American Ceramic Society. 2010, 75(8): 2308-2311.
20 朱新伟, 刘双, 熊毅 . 铝电解槽用新型干式防渗料性能的研究[J]. 轻金属, 2009, (10): 26-30.
Zhu X W , Liu S , Xiong Y . Studies on a new phase plate dry barrier for aluminium electrolytic cell[J]. Light Metals, 2009, (10): 26-30.
21 张爱芬, 马慧侠, 白万里 . 熔融制样-X射线荧光光谱法测定铝电解槽用干式防渗料中主次成分[J]. 冶金分析, 2014, 34(5): 25-29.
Zhang A F , Ma H X , Bai W L . Determination of major and minor components in dry barrier of aluminum electrolytic cell by X-ray fluorescence spectrometry with sample fusion preparation[J]. Metallurgical Anaysis. 2014, 34(5): 25-29.
22 赵更金, 吕风雷, 苗拥军, 等 . YS/T 456—2014《铝电解槽用干式防渗料》修订介绍[J]. 耐火材料, 2014, 48(6): 478-480.
Zhao G X , Lyu F L , Miao Y J , et al . Revised introduction of YS/T 456—2014 dry barrier powder refractory for aluminum electrolysis cell[J]. Refractory. 2014, 48(6): 478-480.
23 岳建设 . 铝电解槽用干式防渗耐火材料的开发及防渗机理研究[D]. 西安, 西安理工大学, 2007: 1-13.
Yue J M . Exploit dry damming cell and on theme chanism of study prevent penetrate[D]. Xi’an: Xi’an University of Technology, 2007: 1-13.
24 张成行, 宋明刚, 钱开平, 等 . 铝电解槽用干式保温防渗料的研制及应用[J]. 耐火材料, 2003, (6): 339-341.
Zhang C X , Song M G , Qian K P , et al . Development and application of insulating dry barrier for aluminum electrolytic cell[J]. Refractory Materials. 2003, (6): 339-341.
25 冯乃祥 . 铝电解[M]. 北京: 化学工业出版社. 2006: 203-205.
Feng N X . Aluminum Electrolysis[M]. Beijing: Chemical Industry Press. 2006: 203-205.
26 Bonadia P , Valenzuel F A O , Bittencourt L R , et al . Aluminosilicate refractories for aluminum cell linings[J]. American Ceramic Society Bulletin, 2005, 84(2): 26-30.
27 杨帅 . 基于界面传热机理的铝电解槽综合热场分析模型及其应用[D]. 长沙: 中南大学, 2013: 67-69.
Yang S . An interfacial heat transfer mechanism based integrated model and its application for thermal filed analysis in aluminum reduction[D]. Changsha: Central South University, 2013: 67-69.
28 Pogodaev A M , Proshkin A V , Polyakov P V , et al . Processes in refractory materials of the cathode assembly of electrolysis cells for aluminum production[J]. Russian Journal of Nonferrous Metals, 2010, 51(4): 279-284.
29 Siljan O J . Sodium aluminium fluoride attack on alumino-silicate refractories-chemical reactions and mineral formation[D]. Norway: NTNU. 1990: 15-20.
30 李秋霞, 刘永成, 荆碧, 等 . SiO2在真空低价氟化法炼铝过程的分布[J]. 真空科学与技术学报, 2011, 31(4): 490-494.
Li Q X , Liu Y C , Jing B , et al . Possible reaction paths of silica in vacuum extraction of aluminum by fluoridization[J]. Journal of Vacuum Science and Technology, 2011, 31(4): 490-494.
31 Lambotte G , Chartrand P . Thermodynamic optimization of the (Na2O+SiO2+NaF+SiF4) reciprocal system using the modified quasichemical model in the quadruplet approximation[J]. The Journal of Chemical Thermodynamics, 2011, 43(11): 1678-1699.
[1] 曾昭文, 郑成, 毛桃嫣, 魏渊, 肖润辉, 彭思玉. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(S1): 1-14.
[2] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[3] 张丽, 由钢, 乔霄峰, 许光文, 刘国桢, 刘云义. 氯碱电解槽内压力波动的混沌分析及流型识别[J]. 化工学报, 2019, 70(S1): 35-44.
[4] 刘兴鹏, 严丹丹. 化学反应体系中电磁脉冲的频谱变化[J]. 化工学报, 2019, 70(S1): 177-181.
[5] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[6] 任帅, 李星, 张京, 汪小憨, 赵黛青. 乙醇和二甲醚微射流火焰燃烧特性研究[J]. 化工学报, 2019, 70(5): 1973-1980.
[7] 周麟晨, 孙志高, 陆玲, 王赛, 李娟, 李翠敏. 有机相变乳液中HCFC–141b水合物生成及稳定性[J]. 化工学报, 2019, 70(5): 1674-1681.
[8] 郭玉梅, 曹丽琼, 郭彦霞, 燕可洲. 煤矸石和赤泥协同提取氧化铝过程矿相转变研究[J]. 化工学报, 2019, 70(4): 1542-1549.
[9] 王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271.
[10] 亢银虎, 张朋远, 刘葱葱, 马江泽, 卢啸风. 基于化学爆炸模式分析方法的乙烯对冲扩散火焰熄火机理[J]. 化工学报, 2019, 70(4): 1644-1651.
[11] 王舜浩, 朱文俐, 胡正根, 周芮, 余柳, 王彬, 张小斌. 液氢缩比贮箱蒸发特性数值模拟及实验验证[J]. 化工学报, 2019, 70(3): 840-849.
[12] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
[13] 刘小诗, 邹得球, 贺瑞军, 马先锋. 氧化石墨烯/石蜡复合相变乳液的制备及对流传热特性[J]. 化工学报, 2019, 70(3): 1188-1197.
[14] 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
[15] 陈卫, 任瑛. 流态化与物质相变的相似性[J]. 化工学报, 2019, 70(1): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .