化工学报 ›› 2019, Vol. 70 ›› Issue (1): 290-297.doi: 10.11949/j.issn.0438-1157.20180646

• 材料化学工程与纳米技术 • 上一篇    下一篇

癸醇-棕榈酸/膨胀石墨低温复合相变材料的制备与性能

周孙希1,2(),章学来1(),刘升2,陈启杨1,徐笑锋1,王迎辉1   

  1. 1. 上海海事大学蓄冷技术研究所,上海 201306
    2. 北京市农林科学院蔬菜研究中心,北京 100097
  • 收稿日期:2018-06-12 修回日期:2018-10-08 出版日期:2019-01-05 发布日期:2018-10-25
  • 通讯作者: 章学来 E-mail:1373988947@qq.com;xlzhang@shmtu.edu.cn
  • 作者简介:周孙希(1994—),男,硕士研究生,<email>1373988947@qq.com</email>|章学来(1964—),男,博士,教授,<email>xlzhang@shmtu.edu.cn</email>
  • 基金资助:
    国家重点研发课题(2018YFD0401305);基金项目:国家自然科学基金项目(51376115);上海市科委项目(16040501600)

Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material

Sunxi ZHOU1,2(),Xuelai ZHANG1(),Sheng LIU2,Qiyang CHEN1,Xiaofeng XU1,Yinghui WANG1   

  1. 1. Cool Storage Technology Institute, Shanghai Maritime University, Shanghai 201306, China
    2. Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
  • Received:2018-06-12 Revised:2018-10-08 Online:2019-01-05 Published:2018-10-25
  • Contact: Xuelai ZHANG E-mail:1373988947@qq.com;xlzhang@shmtu.edu.cn

摘要:

为了寻求温度段在2~3℃的低温相变材料,采用低共熔法,以理论计算为基础制备了癸醇-棕榈酸(DA-PA)二元复合相变材料。为提高其热导率,利用膨胀石墨(EG)的多孔特性,制备了最佳质量比为15∶1的DA-PA/EG复合相变材料。通过DSC、步冷曲线、红外光谱测试、SEM、Hot Disk热常数分析、高低温循环实验对复合相变材料的结构和性能进行了研究。实验结果表明,当DA-PA质量比为97.8∶2.2时的低共熔温度为2.9℃,相变潜热为203.6 J·g-1。真空吸附后DA-PA被均匀地包裹在EG的多孔网状结构中,DA-PA/EG的相变温度为2.7℃,相变潜热为193.9 J·g-1,热导率为1.416 W·(m·K)-1,相比DA-PA提高了4.3倍。经过100次高低温循环后,DA-PA/EG仍保持良好的稳定性,在冷链物流中有较大的应用价值。

关键词: 复合材料, 相变, 热传导, 吸附, 稳定性

Abstract:

To find a low temperature phase change material with a temperature range of 2—3℃, a sterol-palmitic acid (DA-PA) binary composite phase change material was prepared by eutectic method based on theoretical calculation. To improve the thermal conductivity, the DA-PA/EG composite phase change material with the optimal mass ratio of 15:1 was obtained by using the porous characteristics of expanded graphite (EG). The structure and properties of the composite phase change material were studied by DSC, step cooling curve, FI-TR, SEM and high-low temperature cycle test. The results show that when the mass ratio of DA-PA was 97.8:2.2, the phase change temperature was 2.9℃ and the latent heat was 203.6 J·g-1. After vacuum adsorption, DA-PA was uniformly encapsulated in the porous network structure of EG. The phase change temperature of DA-PA/EG was 2.7℃, the latent heat was 193.9 J·g-1, and the thermal conductivity was 1.416W·(m·K)-1, which was 4.3 times higher than DA-PA. After 100 times of high-low temperature cycles, the thermal properties of DA-PA/EG did not change much and still maintained good stability. The results show that the DA-PA/EG composite phase change material has great application value in the cold chain logistics.

Key words: composites, phase change, heat conduction, adsorption, stability

中图分类号: 

  • TK 02

表1

实验仪器"

EquipmentModelAccuracy
precision electronic balanceMSl05DU±0.01 mg
magnetic stirrerHJ-6A
cryogenic bathDC-6515±0.1℃
Agilent data acquisition instrument34972A±0.01℃
differential scanning calorimetry(DSC)

DSC200F3

temperature<0.1℃, enthalpy<0.1%
hot disk thermal constant analyzer

TPS500

<2%

electron microscope scanner(SEM)

KYKY-EM6000

box resistance furnaceSX2-4-10A
vacuum drying ovenDZF-6020
Fourier infrared spectrometerTENSOR37
high and low temperature alternating box

YSGJW-100C

±0.5℃

图1

步冷实验装置"

图2

DA-PA二元低共熔混合物的DSC曲线"

图3

DA-PA二元低共熔混合物的步冷曲线"

图4

热处理前后的DA-PA/EG"

表2

不同比例样品热处理前后质量变化"

Proportion (DA-PA:EG)Before heat treatment/gAfter heat treatment/gMass loss/gPercentage loss/%
10:10.400.3980.0020.50
11:10.400.3980.0020.50
12:10.400.3980.0020.50
13:10.400.3970.0030.75
14:10.400.3960.0041.00
15:10.400.3960.0041.00
16:10.400.3740.0266.50
17:10.400.3720.0287.00
18:10.400.3580.04210.5
19:10.400.3510.04912.25
20:10.400.3430.05714.25
21:10.400.3260.07418.50

图5

复合相变材料红外光谱图"

图6

EG、DA-PA/EG的电镜扫描图"

图7

DA-PA/EG的DSC曲线"

图8

添加EG前后相变材料的步冷曲线"

图9

循环后DA-PA/EG的DSC曲线"

图10

DA-PA/EG循环前后的步冷曲线"

1 张仁元. 相变材料与相变储能技术[M]. 北京: 科学出版社, 2009: 2.
ZhangR Y. Phase Change Materials and Phase Change Energy Storage Technology [M].Beijing: Science Press, 2009: 2.
2 HasanM I, BashirH O, ShadhanA O. Experimental investigation of phase change materials for insulation of residential buildings[J]. Sustainable Cities & Society, 2018, 36(10): 42-58.
3 LaaouatniA, MartajN, BennacerR, et al. Phase change materials for improving the building thermal inertia[J]. Energy Procedia, 2017, 139(11): 744-749.
4 AhmedA, SiddiqueA K, LudwigN, et al. Design and optimization of a hybrid air conditioning system with thermal energy storage using phase change composite[J]. Energy Conversion and Management, 2018, 169(5): 404-418.
5 唐恒博, 武卫东, 苗朋柯, 等. 空调用二元有机相变蓄冷材料的理论预测与研究[J]. 化工新型材料, 2016, 44(3): 121-123.
TangH B, WuW D, MiaoP K, et al. Theoretical prediction and research of binary organic phase change cold storage materials for air conditioning [J]. New Chemical Materials, 2016, 44(3): 121-123.
6 KazemB, MahdiK, SeyedA K, et al.The experimental appraisement of the effect of energy storage on the performance of solar chimney using phase change material[J]. Solar Energy, 2018, 169(5): 411-423.
7 SuD, JiaY, LinY, et al. Maximizing the energy output of a photovoltaic–thermal solar collector incorporating phase change materials[J]. Energy & Buildings, 2017, 153(8): 382-391.
8 章学来, 陈裕丰, 曾涛, 等. 医药冷链物流用相变材料的研制[J]. 制冷与空调, 2017, 17(7): 43-46.
ZhangX L, ChenY F, ZengT, et al. Development of phase change materials for pharmaceutical cold chain logistics[J]. Refrigeration and Air-conditioning, 2017, 17(7): 43-46.
9 MeloneL, AltomareL, CigadaA, et al. Phase change material cellulosic composites for the cold storage of perishable products: from material preparation to computational evaluation[J]. Applied Energy, 2012, 89(1): 339-346.
10 谭爱龄, 陈璐, 柳建良. 高吸水性树脂复合相变材料的冻融特性[J]. 化工进展, 2011, 30(10): 2262-2265.
TanA L, ChenL, LiuJ L. Freeze-thaw characteristics of superabsorbent resin composite phase change materials[J]. Chemical Industry and Engineering Progress, 2011, 30(10): 2262-2265.
11 陈爱英, 汪学英, 曹学增. 相变储能材料的研究进展与应用[J]. 材料导报, 2003, 17(5): 42-44.
ChenA Y, WangX Y, CaoX Z. Research progress and application of phase change materials for energy storage[J]. Material Review, 2003, 17(5): 42-44.
12 曾翠华, 张仁元. 无机水合盐相变储热材料的过冷性研究[J]. 能源研究与信息, 2005, 21(1): 44-49.
ZengC H, ZhangR Y. Study on subcooling property of inorganic hydrated salt phase change thermal storage materials[J]. Energy Research and Information, 2005, 21(1): 44-49.
13 张奕, 张小松. 有机相变材料储能的研究和进展[J]. 太阳能学报, 2006, 27(7): 725-730.
ZhangY, ZhangX S. Research and development of organic phase change material energy storage[J]. Chinese Journal of Solar Energy, 2006, 27(7): 725-730.
14 张爱军, 孙志高, 蔡伟, 等. 二元有机复合相变材料性能实验研究[J]. 化工新型材料, 2016, 44(7): 127-129.
ZhangA J, SunZ G, CaiW, et al. Experimental study on the properties of binary organic composite phase change materials[J]. New Chemical Materials, 2016, 44(7): 127-129.
15 蔡伟, 孙志高, 马鸿凯, 等. 月桂酸-十四醇二元复合相变材料的相变特性[J]. 太阳能学报, 2017, 38(9): 2493-2497.
CaiW, SunZ G, MaH K, et al. Phase transition properties of lauric acid-tetradecanol binary composite phase change materials[J]. Journal of Solar Energy, 2017, 38(9): 2493-2497.
16 袁艳平, 白力, 牛犇. 脂肪酸二元低共熔混合物相变温度和潜热的理论预测[J]. 材料导报, 2010, 24(2): 111-113.
YuanY P, BaiL, NiuB. Theoretical prediction of phase transition temperature and latent heat of fatty acid binary eutectic mixtures[J]. Material Review, 2010, 24(2): 111-113.
17 LiM, KaoH, WuZ, et al. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials[J]. Applied Energy, 2011, 88(5): 1606-1612.
18 ZuoJ, LiW, WengL. Thermal performance of caprylic acid/1-dodecanol eutectic mixture as phase change material (PCM) [J]. Energy & Buildings, 2011, 43(1): 207-210.
19 郭勇, 朱阳倩, 伍乾, 等. 癸酸-肉豆蔻酸相变储热微胶囊的制备与表征[J]. 新型建筑材料, 2017, 44(10): 104-107.
GuoY, ZhuY Q, WuQ, et al. Preparation and characterization of decanoic acid-myristic acid phase change thermal storage microcapsules[J]. Novel Building Materials, 2017, 44(10): 104-107.
20 GuoJ, XiangH X, WangQ Q, et al. Preparation and properties of polyacrylonitrile fiber/binary of fatty acids composites as phase change materials[J]. Energy Sources, 2013, 35(11): 1064-1072.
21 李玉洋, 章学来, 徐笑锋, 等. 正辛酸-肉豆蔻酸低温相变材料的制备和循环性能[J]. 化工进展, 2018, 37(2): 689-693.
LiY Y, ZhangX L, XuX F, et al. Preparation and cycling performance of n-octanoic acid-myristic acid low temperature phase change material[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 689-693.
22 黄艳, 章学来. 十二醇-癸酸-纳米粒子复合相变材料传热性能[J]. 化工学报, 2016, 67(6): 2271-2276.
HuangY, ZhangX L. Heat transfer performance of dodecyl alcohol-capric acid-nanoparticle composite phase change material [J]. Acta Chimica Sinica, 2016, 67 (6): 2271-2276.
23 刘臣臻. 相变微胶囊储能过程传热与流动特性研究[D]. 北京: 中国矿业大学, 2017.
LiuC Z. Study on heat transfer and flow characteristics of phase change microcapsule energy storage process[D]. Beijing: China University of Mining and Technology, 2017.
24 孙凯, 张步宁, 晏凤梅, 等. 石蜡微胶囊型相变储能材料制备及表征[J]. 化工进展, 2011, 30(12): 2676-2678.
SunK, ZhangB N, YanF M, et al. Preparation and characterization of paraffin microcapsule phase change energy storage materials[J]. Chemical Industry and Engineering Progress, 2011, 30(12): 2676-2678.
25 赵长颖, 潘智豪, 王倩, 等. 多孔介质的相变和热化学储热性能[J]. 科学通报, 2016, 61(17): 1897-1915.
ZhaoC Y, PanZ H, WangQ, et al. Phase transition and thermochemical heat storage properties of porous media[J]. Chinese Science Bulletin, 2016, 61(17): 1897-1915.
26 胡小冬, 高学农, 李得伦, 等. 石蜡/膨胀石墨定形相变材料的性能[J]. 化工学报, 2013, 64(10): 3831-3837.
HuX D, GaoX N, LiD L, et al. Properties of paraffin/expanded graphite shaped phase change materials[J]. CIESC Journal, 2013, 64(10): 3831-3837.
27 李云涛, 晏华, 汪宏涛, 等. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征[J].材料导报, 2017, 31(2): 94-99.
LiY T, YanH, WangH T, et al. Preparation and characterization of ternary eutectic system/expanded graphite composite phase change materials with n-decanoic acid-lauric acid-stearic acid[J].Materials Review, 2017, 31(2): 94-99.
28 YangY, PangY, LiuY, et al. Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving[J]. Materials Letters, 2018, 216(1): 200-223.
29 翟天尧, 李廷贤, 仵斯, 等. 高导热膨胀石墨/硬脂酸定形相变储能复合材料的制备及储/放热特性[J]. 科学通报, 2018, 63(7): 674-683.
ZhaiT Y, LiT X, WuS, et al. Preparation and storage/exothermic characteristics of high thermal conductivity expanded graphite/stear stearic phase change energy storage composites[J]. Science Bulletin, 2018, 63(7): 674-683.
30 张寅平, 苏跃红. (准)共晶系相变材料融点及融解热的理论预测[J]. 中国科学技术大学学报, 1995, 25(4): 474-478.
ZhangY P, SuY H. Theoretical prediction of melting point and melting heat of eutectic phase change materials[J]. Journal of University of Science and Technology of China, 1995, 25(4): 474-478.
31 张玉辉, 刘海波, 赵丰东. 探讨用差示扫描量热法(DSC)测量相变材料相变温度和相变焓[J]. 中国建材科技, 2006, 15(4): 35-37.
ZhangY H, LiuH B, ZhaoF D. Discussion on differential scanning calorimetry (DSC) to measure phase change temperature and phase change of phase change materials[J]. China Building Materials Science and Technology, 2006, 15(4): 35-37.
[1] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[2] 杨浩, 闫二艳. 基于束能推进的微波加热效率仿真[J]. 化工学报, 2019, 70(S1): 93-98.
[3] 于强, 鹿院卫, 张晓盼, 吴玉庭. 纳米粒子对熔盐复合蓄热材料热物性的影响[J]. 化工学报, 2019, 70(S1): 217-225.
[4] 徐胜, 刘玲利, 曹锰, 张尚玺, 戴欣, 柳阳, 王振希. PVA/ZnO复合材料“骨架支撑”型孔道构建及铅离子吸附[J]. 化工学报, 2019, 70(S1): 130-140.
[5] 王红斌, 彭佳杰, 孙海权, 潘权稳, 王如竹, 王海亮, 徐兆宏. 硅胶-水吸附式冷风机组的设计及性能实验[J]. 化工学报, 2019, 70(S1): 186-192.
[6] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[7] 周麟晨, 孙志高, 陆玲, 王赛, 李娟, 李翠敏. 有机相变乳液中HCFC–141b水合物生成及稳定性[J]. 化工学报, 2019, 70(5): 1674-1681.
[8] 刘亚敏, 彭蕾, 苏凤英, 王湘湘, 黄艺真, 林在春, 喻晓静, 裴义山. 多孔胺基化氧化石墨烯基材料对CO2的吸附性能研究[J]. 化工学报, 2019, 70(5): 2016-2024.
[9] 王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271.
[10] 安东海, 韩晓林, 程星星, 周滨选, 郑瑛, 董勇. 不同烟气组分对粉状活性焦吸附汞的影响机理[J]. 化工学报, 2019, 70(4): 1575-1582.
[11] 苏银皎, 刘轩, 李丽锋, 李晓航, 姜平, 滕阳, 张锴. 三类煤阶煤中汞的赋存形态分布特征[J]. 化工学报, 2019, 70(4): 1559-1566.
[12] 林茂, 李伙生, 张高生, 张平, 龙建友, 肖唐付, 张鸿郭, 熊静芳, 陈永亨. 铁酸镍基水热炭协同次氯酸根氧化去除废水中铊[J]. 化工学报, 2019, 70(4): 1591-1604.
[13] 王舜浩, 朱文俐, 胡正根, 周芮, 余柳, 王彬, 张小斌. 液氢缩比贮箱蒸发特性数值模拟及实验验证[J]. 化工学报, 2019, 70(3): 840-849.
[14] 张千, 刘向阳, 陈旺, 吴恒, 肖芃颖, 吉芳英, 李宸, 念海明. 新型除磷填料的制备及除磷吸附床运行参数的优化[J]. 化工学报, 2019, 70(3): 1099-1110.
[15] 韩露, 马芳武, 陈实现, 蒲永锋, 沈亮. 玄武岩纤维增强聚乳酸力学性能及耐老化性能[J]. 化工学报, 2019, 70(3): 1171-1178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .