化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4625-4632.doi: 10.11949/j.issn.0438-1157.20180594

• 流体力学与传递现象 • 上一篇    下一篇

文丘里型气液分布器的实验与数值研究

李登稳, 程振民   

  1. 化学工程联合国家重点实验室, 华东理工大学, 上海 200237
  • 收稿日期:2018-05-31 修回日期:2018-08-05 出版日期:2018-11-05
  • 通讯作者: 程振民 E-mail:zmcheng@ecust.edu.cn
  • 基金资助:

    国家自然科学基金项目(21676085)。

Experimental evaluation and numerical simulation of Venturi gas-liquid distributor

LI Dengwen, CHENG Zhenmin   

  1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2018-05-31 Revised:2018-08-05 Online:2018-11-05
  • Supported by:

    supported by the National Natural Science Foundation of China (21676085).

摘要:

以一种文丘里型气液分布器为对象,在直径为28 cm的冷模装置中考察了其流体力学性能。气、液流量分别在5~25 m3·h-1、0.2~0.6 m3·h-1范围内,使用激光粒度仪测量了液滴Sauter平均粒径(D32),并测定了其分布均匀性和抗塔板倾斜性能。结果表明:文丘里结构加强了气液混合,与泡罩型分布器相比,此分布器具有更好的液滴破碎性能;气速增大会使出口液体从伞状流变为喷射流,但仍能在直径约为出口直径10倍的区域内均匀分布;在气、液相负荷分别为10~20 m3·h-1、0.4~0.6 m3·h-1时,液位在进液口和进气口之间,此时分布器具有优异的抗塔板倾斜性能。采用计算流体力学软件模拟了分布器内部气液流动过程,得到了相含率和速度矢量图,所得结果有利于分布器的分析与改进。

关键词: 气液分布器, 冷模实验, 气液混合, 分布均匀性, 计算流体力学

Abstract:

With the gas flow rates of 5-25 m3·h-1 and liquid flow rates of 0.2-0.6 m3·h-1, the fluid mechanics performance of a Venturi gas-liquid distributor were investigated in a trickle bed reactor with an internal diameter of 28 cm. The Sauter mean particle size of the outlet droplets was measured with a laser particle size analyzer. The distribution uniformity was determined by using a liquid collection tray and special model tests were designed to test resistance to tray unlevelness. The results show that the Venturi structure enhances the gas-liquid mixing. Compared with the bubble cap type distributor, this distributor has a better droplet crushing performance. The increase of the gas velocity causes the outlet liquid changing from the umbrella flow to the jet flow, but it can still distribute evenly in the area where the diameter is approximately 10 times the diameter of gas-liquid outlet. When the gas and liquid loads are 10-20 m3·h-1 and 0.4-0.6 m3·h-1, respectively, the liquid level is between liquid inlets and gas inlets, the distributor has excellent performance of resistance to tray unlevelness. The computational fluid dynamics software is used to simulate the gas-liquid flow process inside the distributor, and the vector diagram of phase content and velocity is obtained, which is beneficial to the analysis and improvement of the distributor.

Key words: gas-liquid distributor, cold model experiment, gas-liquid mixing, distribution uniformity, computational fluid dynamics

中图分类号: 

  • TQ051.1

[1] ALVAREZ A, RAMIREZ S, ANCHEYTA J, et al. Key role of reactor internals in hydroprocessing of oil fractions[J]. Energy & Fuels, 2007, 21(3):1731-1740.
[2] ATTA A, ROY S, NIGAM K D P. Investigation of liquid maldistribution in trickle-bed reactors using porous media concept in CFD[J]. Chemical Engineering Science, 2007, 62(24):7033-7044.
[3] TSOCHATZIDIS N A, KARABELAS A J, GIAKOUMAKIS D, et al. An investigation of liquid maldistribution in trickle beds[J]. Chemical Engineering Science, 2002, 57(17):3543-3555.
[4] LYSOVA A A, VONGAMIER A, HARDY E H, et al. The influence of an exothermic reaction on the spatial distribution of the liquid phase in a trickle-bed reactor:direct evidence provided by NMR imaging[J]. Chemical Engineering Journal, 2011, 173(2):552-563.
[5] BALLARD J H, BEACH N, HINES J E, et al. Vapor liquid distribution method and apparatus for the conversion of hydrocarbons:US3218249[P]. 1965-12-16.
[6] MULLER M. Two-phase distribution apparatus and process:US6769672[P]. 2004-8-3.
[7] SHIH C C J, CHRISTOLINI B A, LINDA Y, et al. Vapor-liquid distribution method and apparatus:US5158714[P]. 1992-10-27.
[8] JACOBS G E, STUPIN S W, KUSKIE R W, et al. Reactor distribution apparatus and quench zone mixing apparatus:US6098965[P]. 2000-8-8.
[9] 蔡连波. BL型气液分布器的试验研究[J]. 石油化工设备, 2009, 38(2):1-3. CAI L B. Experimental study on BL type vapor-liquid distributor[J]. Petro-Chemical Equipment, 2009, 38(2):1-3.
[10] GAMBORG M M, JENSEN B N, TOPSOE H, et al. Two-phase downflow liquid distribution device:US5942162[P]. 1999-8-24.
[11] 王振元, 程振民, 于坤. 气-液分流式分布器的流体力学性能[J]. 石油学报(石油加工), 2013, 29(6):1023-1029. WANG Z Y, CHENG Z M, YU K. Hydrodynamics performance of a gas-liquid separated flow distributor[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2013, 29(6):1023-1029.
[12] AND R N M, NIGAM K D P. Gas-liquid distributors for trickle-bed reactors:  a review[J]. Industrial & Engineering Chemistry Research, 2007, 46(19):6164-6182.
[13] BAZERBACHI F, HAROUN Y, AUGIER F, et al. Experimental evaluation of distributor technologies for trickle-bed reactors[J]. Industrial & Engineering Chemistry Research, 2013, 52(32):11189-11197.
[14] HARTER I, BOYER C, RAYNAL L, et al. Flow distribution studies applied to deep hydro-desulfurization[J]. Industrial & Engineering Chemistry Research, 2001, 40(23):5262-5267.
[15] RAYNAL L, HARTER I. Studies of gas-liquid flow through reactors internals using VOF simulations[J]. Chemical Engineering Science, 2001, 56(21):6385-6391.
[16] 王少兵, 张占柱, 毛俊义. 新型气液分配器的开发与应用[J]. 计算机与应用化学, 2016, 33(3):287-291. WANG S B, ZHANG Z Z, MAO J Y. Development and application of the novel gas-liquid distributor[J]. Computers and Applied Chemistry, 2016, 33(3):287-291.
[17] 张洪旭, 蔡连波, 王琼, 等. 固定床反应器中气液分配器的流体力学性能[J]. 化工进展, 2016, 35(7):1975-1979. ZHANG H X, CAI L B, WANG Q, et al. Hydrodynamic performance of a gas-liquid distributor in fixed bed reactors[J]. Chemical Industry and Engineering Progress, 2016, 35(7):1975-1979.
[18] WANG R, LUAN M L, MAO Z S, et al. Correlation between hysteresis of gas-liquid mass transfer and liquid distribution[J]. Chinese Journal of Chemical Engineering, 1997, 5(2):43-47.
[19] KOURI R J, SOHLO J. Liquid and gas flow patterns in random packings[J]. Chemical Engineering Journal & the Biochemical Engineering Journal, 1996, 61(2):95-105.
[20] MARCANDELLI C, LAMINE A S, BERNARD J R, et al. Liquid distribution in trickle-bed reactor[J]. Oil & Gas Science & Technology, 2000, 55(4):407-415.
[21] LLAMAS J D, LESAGE F, WILD G. Influence of gas flow rate on liquid distribution in trickle-beds using perforated plates as liquid distributors[J]. Industrial & Engineering Chemistry Research, 2009, 48(1):7-11.

[1] 倪城振, 杜文莉, 胡贵华. 乙烯裂解炉耦合模拟中湍流模型的影响分析[J]. 化工学报, 2019, 70(2): 450-459.
[2] 陈国旗, 孙见君, 孙电锋, 马晨波. 钠冷快堆核主泵用双端面自泵送机械密封性能分析[J]. 化工学报, 2018, 69(8): 3565-3576.
[3] 冯乐乐, 王景玉, 吴玉新, 张海, 张缦, 吕俊复, 岳光溪. 颗粒特性对撞击分离器性能影响的实验与数值研究[J]. 化工学报, 2018, 69(8): 3348-3355.
[4] 胡仁涛, 任立波, 王德武, 刘燕, 张少峰. 竖直窄通道充分发展段液固流动特性的数值模拟[J]. 化工学报, 2018, 69(8): 3408-3417.
[5] 古新, 罗元坤, 熊晓朝, 王珂, 陶智麟. 扭转流换热器结构参数对流场和温度场的影响[J]. 化工学报, 2018, 69(8): 3390-3397.
[6] 邱小平, 王利民, 杨宁. 耦合EMMS曳力与简化双流体模型的气固流动模拟[J]. 化工学报, 2018, 69(5): 1867-1872.
[7] 亓航, 张伟, 巩亮. 喷雾冲击条件下液膜流动与传热模型[J]. 化工学报, 2018, 69(5): 2014-2022.
[8] 张婷, 李传玺, 郭凯, 张会书, 冯爱国, 刘春江. 旋流强化中空纤维膜组件结构优化及壳程流动研究[J]. 化工学报, 2018, 69(11): 4663-4674.
[9] 李佑平, 张丽, 王学军, 许光文, 刘国桢, 刘云义. 加强筋结构对离子膜内场分布特性的影响[J]. 化工学报, 2018, 69(10): 4167-4176.
[10] 张佳宝, 崔丽杰, 杨宁. 曳力模型和湍流模型对内环流反应器数值模拟的影响[J]. 化工学报, 2018, 69(1): 389-395.
[11] 朱税平, 赵蕾, 杨柳, 王振宇. 桩基并联双螺旋型埋管换热器传热特性的数值仿真[J]. 化工学报, 2017, 68(7): 2730-2738.
[12] 王珏, 杨宁. 基于EMMS方法的鼓泡塔反应器CFD及群平衡模拟[J]. 化工学报, 2017, 68(7): 2667-2677.
[13] 安杉, 陈家庆, 蔡小垒, 王强强, 孟迪, 邵天泽. T型管内油水分离特性的CFD-PBM数值模拟[J]. 化工学报, 2017, 68(4): 1326-1335.
[14] 李美军, 路源, 张士杰, 肖云汉. 水平管降膜吸收局部传热传质特性的数值模拟[J]. 化工学报, 2017, 68(4): 1364-1372.
[15] 张丽, 尚勃均, 李雅侠, 王翠华, 孟辉波, 龚斌, 吴剑华. 流线型涡发生器与螺旋片强化换热器壳侧传热[J]. 化工学报, 2017, 68(4): 1349-1357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!