化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4640-4647.doi: 10.11949/j.issn.0438-1157.20180576

• 流体力学与传递现象 • 上一篇    下一篇

对称分支并行微通道中气液两相流的均匀性规律

沈秋颖1, Tahir Muhammad Faran1, Cumbula Armando José1, 付涛涛1, 姜韶堃2, 朱春英1, 马友光1   

  1. 1. 化学工程联合国家重点实验室, 天津大学化工学院, 天津 300072;
    2. 中国船舶重工集团公司第七一八研究所, 河北 邯郸 056027
  • 收稿日期:2018-05-29 修回日期:2018-07-04 出版日期:2018-11-05
  • 通讯作者: 付涛涛 E-mail:ttfu@tju.edu.cn
  • 基金资助:

    国家自然科学基金项目(91634105,91434204,21576186,21776200)。

Uniformity of gas-liquid two-phase flow in symmetrical parallelized branching microchannels

SHEN Qiuying1, TAHIR Muhammad Faran1, CUMBULA Armando José1, FU Taotao1, JIANG Shaokun2, ZHU Chunying1, MA Youguang1   

  1. 1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
    2. The 718 th Research Institute of China Shipbuilding Industry Corporation, Handan 056027, Hebei, China
  • Received:2018-05-29 Revised:2018-07-04 Online:2018-11-05
  • Supported by:

    supported by the National Natural Science Foundation of China (91634105, 91434204, 21576186, 21776200).

摘要:

采用高速摄像系统研究了对称分支形并行微通道内气液两相流及弹状气泡均匀性规律。实验中分别采用含0.3% SDS的甘油-水溶液与氮气作为液相和气相。观察到弹状流和泡状流两种流型,作出了由两相操作条件构成的流型图及流型转变线。结果表明,气泡非均匀性主要由两微通道内流体之间的相互作用、下游通道中流体动力学的反馈作用以及通道制造误差造成。随液相黏度增大,气泡均匀性变好;在高液相流量以及低气相压力下操作,气泡尺寸分布更易达到均匀。基于压力降守恒原理和微通道内气液两相流阻力模型,构建了两通道中气泡尺寸的预测模型。

关键词: 微通道, 并行放大, 多相流, 分布, 均匀性, 反馈

Abstract:

The uniformity of the gas-liquid two-phase flow and slug bubble in a symmetrical parallelized branching microchannel were studied by using a high-speed camera system. The glycerol-water solution containing 0.3% SDS and nitrogen were used as the liquid phase and the gas phase respectively. Two flow patterns of slug flow and bubble flow were observed, and a flow pattern and a flow pattern transition line composed of two-phase operation conditions were made. The results show that the non-uniformity of bubbles is caused by the hydrodynamics interaction between the two channels, the hydrodynamics feedback of the downstream channels, and the manufacturing differences of microchannels. With the increase of viscosity of the liquid phase, the uniformity of the bubbles becomes better. The bubble size distribution can be more uniform for high liquid flow rates and low gas pressures. The prediction models of bubble size in both microchannels were established based on the conservation principle of pressure drop and the gas-liquid two-phase flow resistance model.

Key words: microchannels, parallelization, multiphase flow, distributions, uniformity, feedback

中图分类号: 

  • TQ021.4

[1] SINTON D. Energy:the microfluidic frontier[J]. Lab on a Chip, 2014, 14(17):3127-3134.
[2] YUAN Q, CHEN G W, YUE J. Gas-liquid microreaction technology:recent developments and future challenges[J]. Chinese Journal of Chemical Engineering, 2008, 16(5):663-669.
[3] GROISMAN A, ENZELBERGER M, QUAKE S R. Microfluidic memory and control devices[J]. Science, 2003, 300(5621):955-958.
[4] ANBARI A, CHIEN H, DATTA S S, et al. Microfluidic model porous media:fabrication and applications[J]. Small, 2018, 14(18):1703575.
[5] ADAMO A, BEINGESSNER R L, BEHNAM M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system[J]. Science, 2016, 352(6281):61-67.
[6] 骆广生, 王凯, 徐建鸿, 等. 微化工过程研究进展[J]. 中国科学:化学, 2014, 44(9):1404-1412. LUO G S, WANG K, XU J H, et al. Advances in research of microstructured chemical process[J]. Scientia Chimica, 2014, 44(9):1404-1412
[7] GAÑÁNCALVO A M, MONTANERO J M, MARTÍNBANDERAS L, et al. Building functional materials for health care and pharmacy from microfluidic principles and flow focusing[J]. Advanced Drug Delivery Reviews, 2013, 65(11/12):1447-1469.
[8] FU T T, MA Y G. Bubble formation and breakup dynamics in microfluidic devices:a review[J]. Chemical Engineering Science, 2015, 135:343-372.
[9] CAI W F, ZHANG J, ZHANG X B, et al. Enhancement of CO2 absorption under Taylor flow in the presence of fine particles[J]. Chinese Journal of Chemical Engineering, 2013, 21(2):135-143.
[10] LAPORTE M, MONTILLET A, DELLA V D, et al. Characteristics of foams produced with viscous shear thinning fluids using microchannels at high throughput[J]. Journal of Food Engineering, 2016, 173:25-33.
[11] AKBARI S, PIRBODAGHI T, KAMM R D, et al. A versatile microfluidic device for high throughput production of microparticles and cell microencapsulation[J]. Lab on a Chip, 2017, 17(12):2067-2075.
[12] Al-RAWASHDEH M, YU F, NIJHUIS T A, et al. Numbered-up gas-liquid micro/milli channels reactor with modular flow distributor[J]. Chemical Engineering Journal, 2012, 207/208:645-655.
[13] KRIEL F H, WOOLLAM S, GORDON R J, et al. Numbering-up Y-Y microfluidic chips for higher-throughput solvent extraction of platinum(Ⅳ) chloride[J]. Microfluidics and Nanofluidics, 2016, 20(10):138.
[14] KOCKMANN N, GOTTSPONER M, ROBERGE D M. Scale-up concept of single-channel microreactors from process development to industrial production[J]. Chemical Engineering Journal, 2011, 167(2/3):718-726.
[15] SCHIANTI J N, CERIZE N N P, DE OLIVEIRAl A M, et al. Scaling up of rifampicin nanoprecipitation process in microfluidic devices[J]. Progress in Nanotechnology and Nanomaterials, 2013, 2(4):101-107.
[16] ZHANG L X, PENG D Y, LYU W J, et al. Uniformity of gas and liquid two phases flowing through two microchannels in parallel[J]. Chemical Engineering Journal, 2015, 263:452-460
[17] GARSTECKI P, FUERSTMAN M J, STONE H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3):437-446.
[18] SHIH R, BARDIN D, MARTZ T D, et al. Flow-focusing regimes for accelerated production of monodisperse drug-loadable microbubbles toward clinical-scale applications[J]. Lab on a Chip, 2013, 13(24):4816-4826.
[19] BARBIER V, WILLAIME H, TABELING P, et al. Producing droplets in parallel microfluidic systems[J]. Physical Review E, 2006, 74(4 Pt 2):46306.
[20] HASHIMOTO M, SHEVKOPLYAS S S, ZASON?SKA B, et al. Formation of bubbles and droplets in parallel, coupled flow-focusing geometries[J]. Small, 2008, 4(10):1795-1805.
[21] RIAUD A, TOSTADO C P, WANG K, et al. A facile pressure drop measurement system and its applications to gas-liquid microflows[J]. Microfluidics and Nanofluidics, 2013, 15(5):715-724.
[22] BORDBAR A, TAASSOB A, ZARNAGHSH A, et al. Slug flow in microchannels:numerical simulation and applications[J]. Journal of Industrial and Engineering Chemistry, 2018, 62:26-39.
[23] MUKHTAR U A, SAHABO A, ABBAGONI B M. Investigation of slug flow characteristics for energy harvesting applications[J]. International Journal of Engineering and Technology Innovation, 2018, 8(2):146-155.
[24] TAHA T, CUI Z F. CFD modelling of slug flow inside square capillaries[J]. Chemical Engineering Science, 2006, 61(2):665-675.
[25] CONCHOUSO D, CASTRO D, KHAN S A, et al. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions[J]. Lab on a Chip, 2014, 14(16):3011-3020.
[26] STOFFEL M, WAHL S, LORENCEAU E, et al. Bubble production mechanism in a microfluidic foam generator[J]. Physical Review Letters, 2012, 108(19):198302.
[27] BRETHERTON F P. The motion of long bubbles in tubes[J]. Journal of Fluid Mechanics, 1961, 10(2):166-188.
[28] RATULOWSKI J, CHANG H. Transport of gas bubbles in capillaries[J]. Physics of Fluids A, 1989, 10(1):1642-1655.
[29] ODY C P, BAROUD C N, DE LANGRE E. Transport of wetting liquid plugs in bifurcating microfluidic channels[J]. Journal of Colloid and Interface Science, 2007, 308(1):231-238.
[30] FU T T, MA Y G, LI H Z. Hydrodynamic feedback on bubble breakup at a T-junction within an asymmetric loop[J]. AIChE Journal, 2014, 60(5):1920-1929.
[31] FU T T, MA Y G, FUNFSCHILLING D, et al. Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction[J]. Chemical Engineering Science, 2010, 65(12):3739-3748.
[32] CHRISTOPHER G F, NOHARUDDIN N N, TAYLOR J A, et al. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions[J]. Physical Review E, 2008, 78(3):36317.

[1] 梁倩卿, 马学虎, 王凯, 春江, 郝婷婷, 兰忠, 王亚雄. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281.
[2] 苏银皎, 刘轩, 李丽锋, 李晓航, 姜平, 滕阳, 张锴. 三类煤阶煤中汞的赋存形态分布特征[J]. 化工学报, 2019, 70(4): 1559-1566.
[3] 王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271.
[4] 李晓航, 刘芸, 苏银皎, 滕阳, 关彦军, 张锴. 煤粉炉和循环流化床锅炉飞灰特性对其汞吸附能力的影响[J]. 化工学报, 2019, 70(3): 1075-1082.
[5] 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
[6] 刘英杰, 祝京旭. 气泡驱动液固流化床内二元颗粒的流化行为[J]. 化工学报, 2019, 70(1): 91-98.
[7] 陈卫, 任瑛. 流态化与物质相变的相似性[J]. 化工学报, 2019, 70(1): 1-9.
[8] 梁婷, 张丹, 杨庆忠, 严俊杰. 纯水静态闪蒸起始阶段气泡群时空分布规律的实验研究[J]. 化工学报, 2019, 70(1): 49-55.
[9] 周刊, 李蔚, 李俊业, 朱华, 盛况, 白光辉, 常浩. 微细通道内超亲水改性表面饱和沸腾的传热特性[J]. 化工学报, 2018, 69(S2): 82-88.
[10] 傅允准, 武双, 林继超, 巨永林, 牛伟琛. B型液化天然气模拟舱绝热材料破损对蒸发率影响的实验研究[J]. 化工学报, 2018, 69(S2): 123-127.
[11] 徐肖肖, 陈龙, 肖久旻, 刘朝. 两相流在扁平T型管中压降特性的实验研究[J]. 化工学报, 2018, 69(S2): 174-179.
[12] 刘海潮, 邵双全, 张海南, 田长青. 回路热管微通道换热器蒸发冷却实验[J]. 化工学报, 2018, 69(S2): 161-166.
[13] 傅允准, 李鹏魁, 巨永林. LNG船B型液货舱绝热材料破损对蒸发率的影响模拟分析[J]. 化工学报, 2018, 69(S2): 500-504.
[14] 杜东兴, 郑利晨, 张旭, 孙国龙, 李莺歌, 巢昆. 多孔介质内超临界CO2流体及泡沫驱油特性的比较实验研究[J]. 化工学报, 2018, 69(S1): 58-63.
[15] 杨树俊, 魏玉聪, Woo Meng Wai, 吴铎, 陈晓东, 肖杰. 入口旋流对均一粒径液滴喷雾干燥塔影响的数值模拟[J]. 化工学报, 2018, 69(9): 3814-3824.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!