化工学报 ›› 2019, Vol. 70 ›› Issue (1): 417-424.doi: 10.11949/j.issn.0438-1157.20180556

• 过程安全 • 上一篇    

融合C80数据的绝热加速量热法热惯量因子修正

丁炯(),陈琪,许启跃,杨遂军,叶树亮()   

  1. 中国计量大学工业与商贸计量技术研究所,浙江 杭州 310018
  • 收稿日期:2018-05-25 修回日期:2018-10-27 出版日期:2019-01-05 发布日期:2018-10-29
  • 通讯作者: 叶树亮 E-mail:dingjiong@cjlu.edu.cn;itmt_paper@126.com
  • 作者简介:丁炯(1986—),男,博士,讲师,<email>dingjiong@cjlu.edu.cn</email>|叶树亮(1973—),男,博士,教授,<email>itmt_paper@126.com</email>
  • 基金资助:
    浙江省自然科学基金项目(LQ15F030003,LY17F010011);浙江省基础公益研究计划项目(LGF18B030001);浙江省仪器科学与技术重中之重学科人才培育计划项目(JL150501)

ARC thermal inertia correction method based on C80 data merging

Jiong DING(),Qi CHEN,Qiyue XU,Suijun YANG,Shuliang YE()   

  1. Institute of Industry and Trade Measurement Technology, China Jiliang University, Hangzhou 310018, Zhejiang, China
  • Received:2018-05-25 Revised:2018-10-27 Online:2019-01-05 Published:2018-10-29
  • Contact: Shuliang YE E-mail:dingjiong@cjlu.edu.cn;itmt_paper@126.com

摘要:

受限于仪器原理,绝热加速量热法数据分析需进行热惯量因子修正。然而,现有的修正方法均违背由反应物比热及炉体温度动态追踪效果变化等引起热惯量因子动态变化的事实,导致动力学参数求取存在偏差。针对上述不足,提出一种基于C80与绝热加速量热数据联用的绝热加速量热热惯量因子修正及动力学计算方法。具体步骤如下:基于Friedman法分析C80数据获取无模型动力学参数,将其代入绝热数据求解反应体系比热容与等效热惯量因子乘积,并在绝热平衡方程中由上述乘积替代恒定热惯量因子及比热实现动力学计算。以过氧化二叔丁基(DTBP)和过氧化氢异丙苯(CHP)为实验对象进行实验验证。结果表明,基于两种量热模式联用的热惯量因子修正方法避免了热惯量动态变化对动力学分析的影响,从而获得更加准确的动力学参数。

关键词: 反应动力学, 安全, 动力学模型, 热惯量因子, 绝热加速量热, 差示扫描量热

Abstract:

Due to the limit of the principle of accelerating rate calorimeter, thermal inertia factor correction is necessary for kinetics computation. However, the existing correction methods are contrary to the fact that the thermal inertia factor is shifty during the reaction process. Actually, the specific heat of the reactant and the efficiency of temperature tracking change with the reaction process. This leads to the kinetic computation errors. In response to these deficiencies, a method is proposed that the dynamical thermal inertia factor correction based on differential scanning calorimeter (C80) and accelerating rate calorimeter (ARC) data merging. The details of the method are as followed. Firstly, according to the Friedman method, the non-model kinetics parameters are obtained with the C80 data. Secondly, the product of the heat capacity and the equivalent thermal inertia factor is got through using the non-model kinetics parameters to solve the accelerating rate calorimeter data. Third, with the replacement of constant thermal inertia factor and the specific heat by the product, the kinetics results of ARC data are calculated. To verify the validity of the proposed method, the experiments are performed by using di-tert-butyl peroxide (DTBP) and cumene hydroperoxide (CHP). The results show that the proposed methods can avoid the influence of the dynamical thermal inertia factor in kinetic computation. It is worth popularizing in the thermal safety evaluation of chemical process.

Key words: reaction kinetic, safety, kinetic modeling, thermal inertia factor, accelerating rate calorimeter, differential scanning calorimeter

中图分类号: 

  • TQ 013.2

图1

DTBP不同扫描速率下反应速率曲线"

表1

DTBP不同扫描速率C80实验数据"

样品

质量/mg

扫描速率/

(℃?min-1)

起始放热

温度/℃

峰值

温度/℃

反应热/

(J?g-1)

300.50.2121.3149.61351.6
301.00.5131.3163.51311.8
300.01142.9173.21244.4
300.32155.8185.01235.9

图2

DTBP不同扫描速率下ln(dα/dt)与1000/T的关系"

图3

Eα、ln(Aαf(α))与转化率α的关系"

图4

DTBP绝热加速量热实验温度-时间曲线"

图5

?equcs与温度的关系"

图6

两种方法的温度-温升速率拟合效果"

表2

动力学参数计算结果对比"

MethodE/(kJ?mol-1)lnA/s-1nTD24/℃SS
ARC138.531.30.9781.66.8×10-4
ARC+C80152.037.11.0072.33.4×10-4

图7

两种拟合方法温度-时间拟合曲线"

图8

CHP不同扫描速率下反应速率曲线"

表3

CHP不同扫描速率C80实验数据"

样品

质量/mg

扫描速率/

(℃?min-1)

起始放热

温度/℃

峰值

温度/℃

反应

放热/(J?g-1)

200.20.2127.0134.81637.1
200.10.5141.4153.11611.3
200.01153.9165.51572.2
200.02158.2173.71526.1

图9

CHP不同扫描速率下ln(dα/dt)与1000/T的关系"

图10

Eα、ln(Aαf(α))与转化率α的关系"

图11

CHP绝热实验温度-时间曲线"

图12

?equcs与温度关系图"

图13

两种拟合方法温度-温升速率拟合曲线"

图14

两种拟合方法温度-时间拟合曲线"

表4

动力学参数计算结果对比"

MethodE/(kJ?mol-1)lnA/s-1n1n2zTD24/℃SS
ARC128.830.490.980.950.2071.55.9×10-5
ARC+C80137.732.500.701.000.1580.92.7×10-5
1 孙金华, 丁辉. 化学物质热危险性评价[M]. 北京: 科学出版社, 2005.
SunJ H, DingH. Thermal Risk Evaluation of Chemical Substance[M]. Beijing: Science Press, 2005.
2 IizukaY, SurianarayananM. Comprehensive kinetic model for adiabatic decomposition of di-tert-butyl peroxide using batch CAD[J]. Industrial & Engineering Chemistry Research, 2003, 42(13): 2987-2995.
3 SridharV P, SurianarayananM, MandalA B. Accelerating rate calorimeter studies of water-induced thermal hazards of fireworks tip mixture[J]. Journal of Thermal Analysis & Calorimetry, 2013, 112(3): 1335-1341.
4 KossoyA, SheinmanI. Effect of temperature gradient in sample cells of adiabatic calorimeters on data interpretation[J]. Thermochimica Acta, 2010, 500(1): 93-99.
5 TownsendD I, TouJ C. Thermal hazard evaluation by an accelerating rate calorimeter[J]. Thermochimica Acta, 1980, 37(1): 1-30.
6 FisherH G, GoetzD D. Determination of self-accelerating decomposition temperatures using the accelerating rate calorimeter[J]. Journal of Loss Prevention in the Process Industries, 1991, 4(5): 305-316.
7 FisherH G, GoetzD D. Determination of self-accelerating decomposition temperatures for self-reactive substances[J]. Journal of Loss Prevention in the Process Industries, 1993, 6(3): 183-194.
8 KossoyA A, SinghJ, KoludarovaE Y. Mathematical methods for application of experimental adiabatic data — an update and extension[J]. Journal of Loss Prevention in the Process Industries, 2015, 33(1): 88-100.
9 尹瑞丽. 热修正系数对绝热量热结果的影响研究[D]. 南京: 南京理工大学, 2016.
YinR L. Impacts of thermal correction factor on adiabatic calorimetry results[D]. Nanjing: Nanjing University of Science and Technology, 2016.
10 XuQ Y, DingJ, YangS J, et al. Modeling of a power compensated adiabatic reaction system for temperature control design and simulation analyses[J]. Thermochimica Acta, 2017, 657(1): 104-109.
11 WilcockE, RogersR L. A review of the phi factor during runaway conditions[J]. Journal of Loss Prevention in the Process Industries, 1997, 10(5): 289-302.
12 周奕杉, 陈利平, 陈网桦, 等.甲苯一段硝化产物TD24的获取[J]. 化工学报, 2014, 65(11): 4383-4391.
ZhouY S, ChenL P, ChenW H, et al. TD24 determination for mono-nitration products of toluene[J]. CIESC Journal, 2014, 65(11): 4383-4391.
13 WhitmoreM W, WilberforceJ K. Use of the accelerating rate calorimeter and the thermal activity monitor to estimate stability temperatures[J]. Journal of Loss Prevention in the Process Industries, 1993, 6(2): 95-101.
14 VyazovkinS, BurnhamA K, CriadoJ M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1): 1-19.
15 FriedmanH L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. Journal of Polymer Science Part C Polymer Symposia, 1964, 6(1): 183-195.
16 KossoyA A, KoludarovaE. Specific features of kinetics evaluation in calorimetric studies of runaway reactions[J]. Journal of Loss Prevention in the Process Industries, 1995, 8(4): 229-235.
17 RoduitB, HartmannM, FollyP, et al. Thermal decomposition of AIBN(Part B): Simulation of SADT value based on DSC results and large scale tests according to conventional and new kinetic merging approach[J]. Thermochimica Acta, 2015, 621(1): 6-24.
18 MiyakeA, SuminoM, OkaY, et al. Prediction and evaluation of the reactivity of self-reactive substances using microcalorimetries[J]. Thermochimica Acta, 2000, 352/353: 181-188.
19 ChouY P, HuangJ Y, TsengJ M, et al. Reaction hazard analysis for the thermal decomposition of cumene hydroperoxide in the presence of sodium hydroxide[J]. Journal of Thermal Analysis & Calorimetry, 2008, 93(1): 275-280.
20 RoduitB, HartmannM, FollyP, et al. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points[J]. Thermochimica Acta, 2014, 579(5): 31-39.
21 KimuraA, OtsukaT. Performance evaluation of differential accelerating rate calorimeter for the thermal runaway reaction of di- tert -butyl peroxide[J]. Journal of Thermal Analysis & Calorimetry, 2013, 113(3): 1585-1591.
22 董泽, 陈利平, 陈网桦, 等. 40%DCP溶液的热分解模型[J]. 化工学报, 2017, 68(5): 1773-1779.
DongZ, ChenL P, ChenW H, et al. Thermal decomposition model for solution of 40% dicumyl peroxide[J]. CIESC Journal, 2017,68(5): 1773-1779.
23 MoukhinaE. Thermal decomposition of AIBN Part C: SADT calculation of AIBN based on DSC experiments[J]. Thermochimica Acta, 2015, 621(1): 25-35.
24 黄艳军, 谢传欣, 曹居正, 等. 过氧化氢异丙苯热稳定性与热安全性研究[J]. 中国安全科学学报, 2011, 21(6): 116-122.
HuangY J, XieC X, CaoJ Z, et al. Study on thermal stability and thermal safety of cumene hydroperoxide[J]. China Safety Science Journal, 2011, 21(6): 116-122.
25 金满平, 孙峰, 石宁, 等. 水和弱酸对过氧化氢异丙苯热危险性的影响[J]. 化工学报, 2012, 63(12): 4096-4102.
JinM P, SunF, ShiN, et al. Influence of water and weak acid on thermal hazard of cumene hydroperoxide[J]. CIESC Journal, 2012, 63(12): 4096-4102.
26 孙峰, 薛岩, 谢传欣, 等. 有机过氧化物分解机理及热危害[J]. 化工学报, 2012, 63(8): 2431-2436.
SunF, XueY, XieC X, et al. Decomposition kinetics and thermal hazard of organic peroxides[J].CIESC Journal, 2012, 63(8): 2431-2436.
27 DuhY S, KaoC S, HwangH H, et al. Thermal decomposition kinetics of cumene hydroperoxide[J]. Process Safety & Environmental Protection, 1998, 76(4): 271–276.
28 ChenK Y, WuS H, WangY W, et al. Runaway reaction and thermal hazards simulation of cumene hydroperoxide by DSC[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(1): 101-109.
29 江美丽, 郑俊鹤, 王犇. 过氧化二异丙苯的热稳定性及安全性研究[J]. 安全与环境学报, 2014, 14(1): 117-121.
JiangM L, ZhengJ H, WangB. On the thermal stability and safety of dicumyl peroxide[J]. Journal of Safety & Environment, 2014, 14(1): 117-121.
30 胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2001.
HuR Z, ShiQ Z. Thermal Analysis Kinetics[M]. Beijing: Science Press, 2001.
[1] 尚志新, 张香兰. γ-巯丙基三乙氧基硅烷水解程度对纳米二氧化硅接枝机理影响的DFT研究[J]. 化工学报, 2019, 70(5): 1663-1673.
[2] 闫景春, 沈来宏, 蒋守席, 葛晖骏. 高钠煤化学链燃烧特性及煤焦气化反应动力学研究[J]. 化工学报, 2019, 70(5): 1913-1922.
[3] 杨世品, 黄振, 李丽娟, 宋健全, 叶景, 汪辉. 复杂化工过程失配子模型深度诊断与修正算法[J]. 化工学报, 2019, 70(4): 1485-1493.
[4] 李德生, 张超, 邓时海, 胡智丰, 李金龙, 刘元辉. 基于铁基质高效催化还原污水中硝酸盐氮的实验研究[J]. 化工学报, 2019, 70(3): 1065-1074.
[5] 叶贞成, 周换兰, 饶德宝. 乙炔加氢反应过程混合建模与优化[J]. 化工学报, 2019, 70(2): 496-507.
[6] 彭开香, 张传放, 马亮, 董洁, 焦瑞华, 唐鹏. 面向系统层级的复杂工业过程全息故障诊断[J]. 化工学报, 2019, 70(2): 590-598.
[7] 薛永飞, 王雅琳, 孙备, 李钱钟, 孙家舟. 基于改进状态转移算法的串级平推流反应器动力学参数估计[J]. 化工学报, 2019, 70(2): 607-616.
[8] 窦珊, 张广宇, 熊智华, 王焕钢. 基于多源数据融合的化工园区危险态势感知[J]. 化工学报, 2019, 70(2): 460-466.
[9] 戴波, 周泽彧, 张岩, 林双双, 刘学君. 危化品仓储堆垛安全距离监测系统设计[J]. 化工学报, 2019, 70(2): 707-715.
[10] 邓伟峰, 蒋珍华, 刘少帅, 张安阔, 吴亦农. 高温区大冷量脉管制冷机优化设计与实验特性[J]. 化工学报, 2019, 70(1): 107-115.
[11] 孟祥坤, 陈国明, 郑纯亮, 吴翔飞, 朱高庚. 基于风险熵和复杂网络的深水钻井井喷事故风险演化评估[J]. 化工学报, 2019, 70(1): 388-397.
[12] 朱益, 王浩, 陈利平, 郭子超, 何中其, 陈网桦. 基于数值计算方法计算最大反应速率到达时间[J]. 化工学报, 2019, 70(1): 379-387.
[13] 徐文星, 梁菁菁, 边卫斌, 戴波, 陶冠良, 刘才. 基于类决策树剪枝法的危化品运输实时路径规划[J]. 化工学报, 2018, 69(S2): 324-329.
[14] 朱琳琳, 皇甫立霞, 郭开华. 液化天然气航运安全标准的现状及最新进展[J]. 化工学报, 2018, 69(S2): 1-8.
[15] 周新志, 邵伦, 崔岢, 杨阳, 周余, 张若彬. 褐煤微波干燥提质生产线的多级功率控制系统研究[J]. 化工学报, 2018, 69(S2): 274-282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .