化工学报 ›› 2019, Vol. 70 ›› Issue (1): 128-135.doi: 10.11949/j.issn.0438-1157.20180521

• 分离工程 • 上一篇    下一篇

尿素(520)晶面可控结晶的分子动力学模拟

蔡惊涛1(),李代禧1(),刘宝林1,栾翰森2,郭柏松3,魏冬青4,王浩2   

  1. 1. 上海理工大学食品科学与工程研究所,上海 200093
    2. 中国医药工业研究总院,上海 201203
    3. 上海东富龙科技股份有限公司注射剂实验室,上海 201108
    4. 上海交通大学微生物代谢国家重点实验室,上海 200240
  • 收稿日期:2018-05-21 修回日期:2018-10-23 出版日期:2019-01-05 发布日期:2018-10-25
  • 通讯作者: 李代禧 E-mail:maxcaijingtao1993@foxmail.com;dxli75@126.com
  • 作者简介:蔡惊涛(1993—),男,硕士,<email>maxcaijingtao1993@foxmail.com</email>|李代禧(1975—),男,副教授,<email>dxli75@126.com</email>
  • 基金资助:
    上海市“创新行动计划”国际科技合作项目(12430702000);上海市自然科学基金项目(12ZR1420400)

Controllable crystallization of urea (520) crystal plane by molecular simulation

Jingtao CAI1(),Daixi LI1(),Baolin LIU1,Hansen LUAN2,Baisong GUO3,Dongqing WEI4,Hao WANG2   

  1. 1. Institute of Food Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    2. China State Institute of Pharmaceutical Industry, Shanghai 201203, China
    3. Injection Laboratory, Shanghai Tofflon Science and Technology Co. Ltd., Shanghai 201108, China
    4. State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2018-05-21 Revised:2018-10-23 Online:2019-01-05 Published:2018-10-25
  • Contact: Daixi LI E-mail:maxcaijingtao1993@foxmail.com;dxli75@126.com

摘要:

由于尿素结晶呈白色针状,晶貌单一,且传统结晶工艺不可控,严重影响药物的一致性评价结果。采用分子动力学模拟方法,从分子水平上研究不同种类的添加剂对尿素晶体生长的调控作用,揭示添加剂对药物晶体生长的调控机制。结果表明:① 六种添加剂(海藻糖、蔗糖、葡萄糖、山梨醇、赖氨酸、精氨酸)在101.325 kPa、290 K下相较于无添加剂时都能不同程度地抑制(520)晶面的生长;② 添加剂对尿素晶面(520)的吸附能越负,其抑制晶面生长效果越好,其中海藻糖抑制(520)晶面生长效果最好;③ 添加剂分子携带基团的种类与数目决定与晶层的相互作用的强弱,特别是海藻糖、蔗糖双糖类分子含有8个羟基,与晶层上的尿素分子氢键相互作用强,与溶液层中的溶质形成竞争性吸附,能更好抑制(520)晶面生长。

关键词: 分子模拟, 晶貌, 添加剂, 吸附, 聚集

Abstract:

Due to urea crystallization showing white needle, single crystal morphology and uncontrollable process of traditional crystallization, it seriously affects drug consistency evaluation. We adopt molecular dynamics simulation method to research regulating effect of different additives on urea crystal growth at molecular level, and reveal the regulation mechanism of additives on urea crystal growth. Finally, the experimental results show: ① At 101.325 kPa and 290 K, all 6 kinds of additives (trehalose, sucrose, glucose, sorbitol, lysine and arginine) can inhibit the growth of urea facet (520) to a certian extent. ② The more negative adsorption energy of the additive on the facet (520) lead to the better inhibition of crystal growth, and the trehalose is the best inhibit for the growth of facet (520). ③ The type and number of the polar group which is carried by additive determine the interactive strength between additive and crystal layer. In particular, trehalose and sucrose which contains 8 hydroxyl groups, have strong interaction with urea molecules on the urea layer,and they can form competitive adsorption with solutes in the solution layer. So they can better inhibit the growth of urea crystal facet (520).

Key words: molecular simulation, crystal morphology, additive, adsorption, aggregation

中图分类号: 

  • O 781

图1

优化后的尿素晶胞结构"

表1

尿素晶胞参数"

Force field a/? b/? c/? α/(°) β/(°) γ/(°)
experiment[14] 5.662 5.662 4.716 90.0 90.0 90.0
COMPASS 5.558 5.558 4.636 90.0 90.0 90.0

表2

不同种类添加剂溶液体系的组成"

System Additives N additive N crystal N urea N water

A0

A1

none

trehalose

0

40

252

252

1000

1000

1300

1295

A2 sucrose 40 252 1000 1294
A3 sorbitol 40 252 1000 1297
A4 glucose 40 252 1000 1299
A5 L-lysine 40 252 1000 1294
A6 L-arginine 40 252 1000 1304

图2

EM法预测尿素晶貌"

表3

EM法预测尿素在真空下主要晶面族"

Hkl Multiplicity d hkl /? Distance/? Total facet area/%

(110)

(001)

4

2

4.00

4.72

172.80

330.33

38.00

16.12

(200) 4 2.83 196.17 14.20
(520) 8 1.05 194.39 8.05

表4

添加剂在(520)晶面上的吸附能"

Additives Number (N ads ) E ads /(kJ/mol)

urea

trehalose

421.69±3.375

78.75±0.687

-4.46±0.380

-34.00±0.691

sucrose 80.79±1.123 -33.38±0.384
sorbitol 112.82±1.496 -20.33±0.441
glucose 136.88±2.188 -16.68±0.476
L-lysine 119.11±3.393 -5.66±0.256
L-arginine 97.25±0.648 -5.39±0.230

图3

不同种类添加剂下(520)晶面模拟100 ns的生长情况"

图4

不同种类添加剂下体系模拟100 ns的密度分布及生长速率"

图5

不同添加剂在(520)晶面上的吸附数和生长速率"

图6

分布在晶层上与溶液层中特定添加剂的均方根位移与扩散系数"

图7

各体系溶液层中尿素分子扩散系数与各特定添加剂周围聚集尿素分子数"

图8

B1、B2、B3、B4体系的海藻糖分子构象与密度分布"

图9

B1、B4体系特定海藻糖分子与晶面作用的氢键数和距离参数"

1 Snyder R C , Veesler S , Doherty M F . The evolution of crystal shape during dissolution: predictions and experiments[J]. Crystal Growth & Design, 2008, 8(4): 1100-1101.
2 宫海燕, 李彩虹, 王佩佩, 等 . 杂质对溶液结晶过程影响的研究进展[J]. 化学与生物工程, 2010, 27(3): 9-12.
Gong H Y , Li C H , Wang P P , et al . Research progress of influence of impurities on solution crystallization[J].Chemistry & Bioengineering, 2010, 27(3): 9-12
3 Mikami T , Sakuma T , Hirasawai I . CSD-controlled reactive crystallization of SrSO4 in the presence of polyethylenimine[J]. Chemical Engineering Research & Design, 2010, 88(9): 1200-1205.
4 张相洋 . 杂质存在条件下的乳酸锌结晶行为研究[D]. 上海: 华东理工大学, 2010.
Zhang X Y . Crystallization behaviour of zinc lactate in presence of impurities[D]. Shanghai: East China University of Science and Technology, 2010.
5 Zhang X , Qian G , Zhou X . Effects of different organic acids on solubility and metastable zone width of zinc lactate[J]. Journal of Chemical & Engineering Data, 2012, 57(57): 2963–2970.
6 Cashell C , Corcoran D , Hodnett B K . Effect of amino acid additives on the crystallization of L-glutamic acid[J]. Crystal Growth & Design, 2015, 5(2): 593-597.
7 Salvalaglio M , Vetter T , Giberti F , et al . Uncovering molecular details of urea crystal growth in the presence of additives[J]. Journal of the American Chemical Society, 2012, 134(41): 17221-17233.
8 黄炳荣, 贺友平, 苏根博 . 尿素晶体生长研究[J]. 人工晶体学报, 1986, 15(2): 85-89.
Huang B R , He Y P , Su G B . Growth studies of urea crystals[J]. Journal of Synthetic Crystals, 1986, 15(2): 85-89.
9 Piana S , Reyhani M , Gale J D . Simulating micrometre-scale crystal growth from solution[J]. Nature, 2005, 438(7064): 70-73.
10 李代禧, 栾瀚森, 郭柏松, 等 . 实用计算药剂学——有效的药剂学工具[J]. 中国医药工业杂志, 2017, 48(12): 1673-1684.
Li D X , Luan H S , Guo B S , et al . Applied computational pharmaceutics: an efficient pharmaceutical tool[J]. Chinese Journal of Pharmaceuticals, 2017, 48(12): 1673-1684.
11 Rapaport D C . Molecular dynamics simulation[J]. Computing in Science & Engineering, 2002, 1(1): 70-71.
12 Allen F H , Davies J E . The Cambridge Structural Database: a quarter of a million crystal structures and rising[J]. Acta Crystallographica, 2002, 58(3): 380–388.
13 Sun H . COMPASS:   An ab initio force-field optimized for condensed-phase applications over view with details on alkane and benzene compounds[J]. Journal of Physical Chemistry B, 1998, 102(38): 7338-7364.
14 Sklar N , Senko M E , Post B . Thermal effects in urea: the crystal structure at 140°C and at room temperature[J]. Acta Crystallographica, 2010, 14(7): 716-720.
15 Massaro F R , Moret M , Bruno M , et al . Equilibrium and growth morphology of oligoacenes: periodic bond chains (PBC) analysis of tetracene crystal[J]. Crystal Growth & Design, 2011, 11(10): 4639-4646.
16 Hartman P , Bennema P . The attachment energy as a habit controlling factor(Ⅰ): Theoretical considerations[J]. Journal of Crystal Growth, 1980, 49(1): 145-156.
17 Liu N , Zhou C , Shu Y J , et al . Molecular dynamics simulations on crystal morphology of N-guanylurea-dinitramide[J]. Chemical Journal of Chinese Universities, 2017, 38(12): 2231-2237.
18 van der Spoel D , Lindahl E , Hess B , et al . GROMACS: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718.
19 Lindorfflarsen K , Piana S , Palmo K , et al . Improved side-chain torsion potentials for the Amber ff99SB protein force field[J]. Proteins Structure Function & Bioinformatics, 2010, 78(8): 1950–1958.
20 Abascal J L F , Vega C . A general purpose model for the condensed phases of water: TIP4P/2005[J]. Journal of Chemical Physics, 2005, 123(23): 234505.
21 Darden T , York D , Pedersen L . Particle mesh Ewald: an N⋅log(N) method for ewald sums in large systems[J]. Journal of Chemical Physics, 1998, 98(12): 10089-10092.
22 Mudi A , Chakravarty C . Effect of the Berendsen thermostat on the dynamical properties of water[J]. Molecular Physics, 2004, 102(7): 681-685.
23 Bussi G , Zykova-Timan T , Parrinello M . Isothermal-isobaric molecular dynamics using stochastic velocity rescaling[J]. Journal of Chemical Physics, 2009, 130(7): 2384.
24 唐鼎元, 贺友平, 林斯太, 等 . 紫外倍频晶体尿素的生长[J]. 人工晶体学报, 1982, (z 1): 82-83.
Tang D Y , He Y P , Lin S T , et al . The growth of UV frequency doubling crystal urea[J]. Journal of Synthetic Crystals, 1982, (z 1): 82-83
25 Janimak J J , Cheng S Z D , Giusti P A , et al . Isotacticity effect on crystallization and melting in polypropylene fractions(Ⅱ): Linear crystal growth rate and morphology study[J]. Macromolecules, 1991, 24(9): 2253-2260.
26 Pimentel G C , Mcclellan A L . Hydrogen bond[J]. Annual Review of Physical Chemistry, 2003, 22(1): 347-385.
27 Michalet X . Mean square displacement analysis of Single-Particle trajectories with localization error[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2010, 100(3): 041914.
28 潘晓莉, 李代禧, 魏冬青 . 离子液体中胰岛素结构稳定性的分子动力学模拟[J]. 化工学报, 2016, 67(12): 5215-5221.
Pan X L , Li D X , Wei D Q . Structural stability of insulin in imidazolium ionic liquids by molecular simulation[J]. CIESC Journal, 2016, 67(12): 5215-5221.
29 郝保红, 黄俊华 . 晶体生长机理的研究综述[J]. 北京石油化工学院学报, 2006, 14(2): 58-64.
Hao B H , Huang J H . Summary on the growth mechanism of crystal[J]. Journal of Beijing Institute of Petro-chemical Technology, 2006, 14(2): 58-64
30 姜兆华, 孙德智, 邵光杰 . 应用表面化学与技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2002.
Jiang Z H , Sun D Z , Shao G J . Applied Surface Chemistry and Technology[M]. Harbin: Harbin Institute of Technology Press, 2002.
[1] 商辉, 刘露, 王瀚墨, 张文慧. 微波电场对甘油水溶液体系中氢键的影响[J]. 化工学报, 2019, 70(S1): 23-27.
[2] 徐胜, 刘玲利, 曹锰, 张尚玺, 戴欣, 柳阳, 王振希. PVA/ZnO复合材料“骨架支撑”型孔道构建及铅离子吸附[J]. 化工学报, 2019, 70(S1): 130-140.
[3] 王红斌, 彭佳杰, 孙海权, 潘权稳, 王如竹, 王海亮, 徐兆宏. 硅胶-水吸附式冷风机组的设计及性能实验[J]. 化工学报, 2019, 70(S1): 186-192.
[4] 刘亚敏, 彭蕾, 苏凤英, 王湘湘, 黄艺真, 林在春, 喻晓静, 裴义山. 多孔胺基化氧化石墨烯基材料对CO2的吸附性能研究[J]. 化工学报, 2019, 70(5): 2016-2024.
[5] 赵汝斌, 蔡猛, 庞煜霞. 碱溶透析和酸析处理对碱木质素物化性质和Pb2+去除性能的影响[J]. 化工学报, 2019, 70(5): 1894-1903.
[6] 毛燕东, 李克忠, 刘雷, 辛峰. 添加剂对催化气化工艺中煤灰结渣性及气化性能影响研究[J]. 化工学报, 2019, 70(5): 1951-1963.
[7] 安东海, 韩晓林, 程星星, 周滨选, 郑瑛, 董勇. 不同烟气组分对粉状活性焦吸附汞的影响机理[J]. 化工学报, 2019, 70(4): 1575-1582.
[8] 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
[9] 林茂, 李伙生, 张高生, 张平, 龙建友, 肖唐付, 张鸿郭, 熊静芳, 陈永亨. 铁酸镍基水热炭协同次氯酸根氧化去除废水中铊[J]. 化工学报, 2019, 70(4): 1591-1604.
[10] 张千, 刘向阳, 陈旺, 吴恒, 肖芃颖, 吉芳英, 李宸, 念海明. 新型除磷填料的制备及除磷吸附床运行参数的优化[J]. 化工学报, 2019, 70(3): 1099-1110.
[11] 李晓航, 刘芸, 苏银皎, 滕阳, 关彦军, 张锴. 煤粉炉和循环流化床锅炉飞灰特性对其汞吸附能力的影响[J]. 化工学报, 2019, 70(3): 1075-1082.
[12] 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
[13] 李龙, 葛天舒, 吴宣楠, 代彦军. 硅胶嵌入多孔纸基对苯蒸气吸附性能[J]. 化工学报, 2019, 70(3): 951-959.
[14] 周钰寒, 陈晓玉, 左成, 郭庆杰, 赵军. 废纸纤维素/SiO2复合气凝胶的性能[J]. 化工学报, 2019, 70(3): 1120-1126.
[15] 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .