化工学报 ›› 2018, Vol. 69 ›› Issue (12): 5049-5055.doi: 10.11949/j.issn.0438-1157.20180493

• 流体力学与传递现象 • 上一篇    下一篇

基于管内相分隔的径向压差在多相流测量的应用

王帅1,2, 王栋2, 董宝光1, 李瑞华1   

  1. 1. 中煤能源研究院有限责任公司, 陕西 西安 710054;
    2. 西安交通大学动力工程多相流国家重点实验室, 陕西 西安 710049
  • 收稿日期:2018-05-10 修回日期:2018-09-13 出版日期:2018-12-05 发布日期:2018-09-26
  • 通讯作者: 王帅 E-mail:ronaldo13579@163.com
  • 基金资助:

    国家重大科学仪器设备开发专项项目(51527808)。

Radial differential pressure used in multiphase flow metering based on phase-isolation

WANG Shuai1,2, WANG Dong2, DONG Baoguang1, LI Ruihua1   

  1. 1. China Coal Energy Research Institute Co., Ltd., Xi'an 710049, Shaanxi, China;
    2. State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • Received:2018-05-10 Revised:2018-09-13 Online:2018-12-05 Published:2018-09-26
  • Supported by:

    supported by the National Key Scientific Instrument and Equipment Development Projects of China (51527808).

摘要:

在管内相分隔技术产生的径向压差应用在单相流测量的基础上,以油水两相流为例,系统地研究了基于管内相分隔产生的径向压差在多相流测量的理论机理,并进行了实验验证。理论分析表明,在管内相分隔状态下,旋流器下游某截面壁面和管中心的径向压差与油水两相流的总质量流量和体积含油率呈一定函数关系,当测量出旋流器下游某截面壁面和管中心的径向压差后,若油水两相流的总质量流量和体积含油率中的任一参数已知,就可以求出另一参数。实验结果显示,在旋流器下游0.075 m和0.115 m的截面上,体积含油率的实验值与理论值的相对误差均在±8.02%以内,此时油水两相流总质量流量的实验值与理论值的相对误差均在±1.44%以内。

关键词: 管内相分隔, 径向压差, 多相流

Abstract:

The phase-isolation technology of multiphase flow in-pipe is widely used in scientific research and engineering area. Based on the application of the phase-isolation technology on single-phase flow measurement, the mechanism of radial differential pressure used in multiphase flow measurement was studied by taking oil-water two-phase flow as an example, and the experimental verification was carried out. The theoretical analysis showed that the radial differential pressure between the pipe wall and pipe center of a cross section downstream of the swirler has a functional relationship between the mass flowrate and oil cut. Once measuring the radial differential pressure between the pipe wall and pipe center of a cross section downstream of the swirler, the mass flowrate and oil cut can be determined if either of the two parameters was known. The experimental results showed that the relative error of oil cut was less than 8.02% for the cross section of 0.075 m or 0.115 m downstream of the swirler, and mass flowrate was less than 1.44%, which provides a theoretical basis for further study of the two-parameter measurement of multiphase flow.

Key words: phase-isolation in-pipe, radial differential pressure, multiphase flow

中图分类号: 

  • O359

[1] WANG S, WANG D, NIU P M, et al. Mass flowrate measurement using the swirl motion in circular conduits[J]. Flow Measurement & Instrumentation, 2017, 54:177-184.
[2] WANG S, WANG D, YANG Y, et al. Phase-isolation of upward oil-water flow using centrifugal method[J]. Flow Measurement & Instrumentation, 2015, 46:33-43.
[3] SHI S Y, XU J Y, SUN H Q, et al. Experimental study of a vane-type pipe separator for oil-water separation[J]. Chemical Engineering Research & Design, 2012, 90(10):1652-1659.
[4] SHI S Y, XU J Y. Flow field of continuous phase in a vane-type pipe oil & water separator[J]. Experimental Thermal and Fluid Science, 2015, 60:208-212.
[5] SHI S Y, WU Y X, ZHANG J, et al. A study on separation performance of a vortex finder in a liquid-liquid cylindrical cyclone[J]. Journal of Hydrodynamics Ser. B, 2010, 22(5):391-397.
[6] CAO X W, CHEN L, DU Y J, et al. Numerical simulation of swirling flow characteristics of supersonic swirling natural gas separator[J]. Journal of China University of Petroleum, 2007, 31(6):79-80.
[7] WEN C, CAO X W, YANG Y, et al. Supersonic swirling characteristics of natural gas in convergent-divergent nozzles[J]. Petroleum Science, 2011, 8(1):114-119.
[8] LIU W, BAI B F. Swirl decay in the gas-liquid two-phase swirling flow inside a circular straight pipe[J]. Experimental Thermal & Fluid Science, 2015, 68:187-195.
[9] MAGAUD F, NAJAFI A F, ANGILELLA J R, et al. Modeling and qualitative experiments on swirling bubbly flows:single bubble with Rossby number of order 1[J]. Journal of Fluids Engineering, 2003, 125(2):239-246.
[10] BANNWART A C. Modeling aspects of oil-water core-annular flows[J]. Journal of Petroleum Science & Engineering, 2001, 32(2/3/4):127-143.
[11] KATAOKA H, TOMIYAMA A, HOSOKAWA S, et al. Two-phase swirling flow in a gas-liquid separator[J]. Journal of Power & Energy Systems, 2008, 2(4):1120-1131.
[12] KATAOKA H, SHINKAI Y, TOMIYAMA A. Effects of swirler shape on two-phase swirling flow in a steam separator[J]. Journal of Power & Energy Systems, 2009, 3(3):347-355.
[13] KATAOKA H, TOMIYAMA A, HOSOKAWA S, et al. Effects of pick-off-ring configuration on separation performance of a gas-liquid separator[J]. Progress in Multiphase Flow Research, 2008, 3:67-74.
[14] KATAOKA H, SHINKAI Y, HOSOKAWA S, et al. Swirling annular flow in a steam separator[C]//16th International Conference on Nuclear Engineering. American Society of Mechanical Engineers.2009:67-74.
[15] KITAGAWA A, HAGIWARA Y, KOUDA T. PTV investigation of phase interaction in dispersed liquid-liquid two-phase turbulent swirling flow[J]. Experiments in Fluids, 2007, 42(6):871-880.
[16] YANG Y, WANG D, NIU P M, et al. Gas-liquid two-phase flow measurements by the electromagnetic flowmeter combined with a phase-isolation method[J]. Flow Measurement & Instrumentation, 2018, 60:78-87.
[17] SWANBORN R A. A new approach to the design of gas-liquid separators for the oil industry[D]. Delft:Technische Universiteit Delft, 1988.
[18] LIN Q Y, LIN J Y, LIN R D, et al. Study on the rotating speed of self-rotating twisted tape inserted tubes[J]. China Mechanical Engineering, 2007, 18 (16):1970-1973.
[19] 蔡圃, 王博. 水力旋流器内非牛顿流体多相流场的数值模拟[J]. 化工学报, 2012, 63(11):3460-3469. CAI P, WANG B. Numerical simulation of multiphase flow field of non-Newtonian fluid in hydrocyclone[J]. CIESC Journal, 2012, 63(11):3460-3469.
[20] 李群松, 陈东旭, 向寓华, 等. 传热管内结晶盐螺旋自转保洁技术试验研究[J]. 热科学与技术, 2008, 7(3):217-220. LI Q S, CHEN D X, XIANG Y H, et al. Crystallized salty in heat transfer tube spiral rotation cleaning technology study[J]. Journal of Thermal Science & Technology, 2008, 7(3):217-220.
[21] ZHAO L, LI F, MA Z, et al. Theoretical analysis and experimental study of dynamic hydrocyclones[C]//ASME 2007, International Conference on Offshore Mechanics and Arctic Engineering. 2007, 132(4):331-338.
[22] 王池, 王自和, 张宝珠, 等. 流量测量技术全书[M]. 北京:化学工业出版社, 2012. WANG C, WANG Z H, ZHANG B Z, et al. Flow Measurement Technique Handbook[M]. Beijing:Chemical Industry Press, 2012.
[23] SILVA F S, VELAZQUEZ M T, HERNANDEZ J R. Experimental study for the use of elbows as flowmeters[J]. Computer Standards & Interfaces, 1999, 21(2):185-185.
[24] QIU X B. The simple economic elbow meter for flow measurement[J]. Measurement & Control, 1993, 26(8):245-246.
[25] LI Z, WANG C. A research on standardization of elbow flow meters[J]. Journal of Hebei Institute of Technology, 2004, 26(4):19-23.
[26] XING L C, GENG Y F, HUA C Q, et al. A combination method for metering gas-liquid two-phase flows of low liquid loading applying ultrasonic and Coriolis flowmeters[J]. Flow Measurement & Instrumentation, 2014, 37:135-143.
[27] LI Y X, WANG J, GENG Y F. Study on wet gas online flow rate measurement based on dual slotted orifice plate[J]. Flow Measurement & Instrumentation, 2009, 20(4/5):168-173.
[28] SUN Z. Mass flow measurement of gas-liquid bubble flow with the combined use of a Venturi tube and a vortex flowmeter[J]. Measurement Science & Technology, 2010, 21(5):055403.
[29] HUA C, GENG Y F. Wet gas metering technique based on slotted orifice and swirlmeter in series[J]. Flow Measurement & Instrumentation, 2013, 30(6):138-143.
[30] HONG K C, GRISTON S. Best practice for the distribution and metering of two-phase steam[J]. SPE Production & Facilities, 1997, 12(3):173-180.
[31] YAMAZAKI S, FUNAKI T, KAWASHIMA K, et al. A concentration measurement system for binary gas mixtures using two flowmeters[J]. Measurement Science & Technology, 2007, 18(18):2762.
[32] FINNEMORE E J, FRANZINI J B. Fluid Mechanics with Engineering Applications[M]. 10th ed. New York:McGraw-Hill, 2003:192-198.

[1] 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
[2] 陈卫, 任瑛. 流态化与物质相变的相似性[J]. 化工学报, 2019, 70(1): 1-9.
[3] 刘英杰, 祝京旭. 气泡驱动液固流化床内二元颗粒的流化行为[J]. 化工学报, 2019, 70(1): 91-98.
[4] 杜东兴, 郑利晨, 张旭, 孙国龙, 李莺歌, 巢昆. 多孔介质内超临界CO2流体及泡沫驱油特性的比较实验研究[J]. 化工学报, 2018, 69(S1): 58-63.
[5] 杨树俊, 魏玉聪, Woo Meng Wai, 吴铎, 陈晓东, 肖杰. 入口旋流对均一粒径液滴喷雾干燥塔影响的数值模拟[J]. 化工学报, 2018, 69(9): 3814-3824.
[6] 朱礼涛, 罗正鸿. 磁共振成像应用于多相流体动力学研究进展[J]. 化工学报, 2018, 69(9): 3765-3773.
[7] 初彤, 杨悦锁, 路莹, 武宇辉, 陈煜, 杜新强. 寒区石油污染场地浅层地下水原位增温强化空气扰动修复[J]. 化工学报, 2018, 69(8): 3701-3710.
[8] 贺登辉, 陈森林, 白博峰. 基于Chisholm模型的V锥流量计气液分层流测量新模型[J]. 化工学报, 2018, 69(8): 3428-3435.
[9] 孙子文, 陈岱琳, 钟文琪, Aibing Yu. 快速流化床颗粒团絮特征的MP-PIC数值模拟[J]. 化工学报, 2018, 69(8): 3443-3451.
[10] 吴云, 杜小磊, 宋凯, 刘宏宇, 王捷, 王二坡. 生物接触氧化池悬浮填料流动特性数值模拟分析[J]. 化工学报, 2018, 69(7): 3242-3248.
[11] 杜敏, 黄彬, 卢麒丞, 龚俊, 罗明, 王助良. 撞击流内液滴碰撞后续发展行为[J]. 化工学报, 2018, 69(5): 2023-2031.
[12] 邱小平, 王利民, 杨宁. 耦合EMMS曳力与简化双流体模型的气固流动模拟[J]. 化工学报, 2018, 69(5): 1867-1872.
[13] 刘岑凡, 张楠, 王维. 鼓泡床中基于气泡结构的多相反应模型[J]. 化工学报, 2018, 69(5): 2057-2062.
[14] 鲍博, 赵双良, 徐建鸿. 基于微纳流控技术的流体相态特性研究进展[J]. 化工学报, 2018, 69(11): 4530-4541.
[15] 姚东, 刘明言, 李翔南. 小型气-液-固流化床液相的停留时间分布[J]. 化工学报, 2018, 69(11): 4754-4762.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!