化工学报 ›› 2018, Vol. 69 ›› Issue (9): 3983-3992.doi: 10.11949/j.issn.0438-1157.20180406

• 能源和环境工程 • 上一篇    下一篇

超声辅助碱浸铜冶炼烟灰中铜砷分离

姚瑛瑛1, 郭莉2, 胡中求1, 全瞿1, 杜冬云1   

  1. 1. 中南民族大学资源与环境学院, 环境科学与工程研究所, 湖北 武汉 430074;
    2. 中国地质大学(武汉)环境学院, 生物地质与环境地质国家重点实验室, 湖北 武汉 430074
  • 收稿日期:2018-04-18 修回日期:2018-06-20 出版日期:2018-09-05 发布日期:2018-07-09
  • 通讯作者: 杜冬云 E-mail:dydu666@mail.scuec.edu.cn
  • 基金资助:

    湖北省科技支撑计划(2014BEC029)。

Separation of copper and arsenic in copper smelting dust by Na2S-NaOH leaching assisted with ultrasound method

YAO Yingying1, GUO Li2, HU Zhongqiu1, QUAN Qu1, DU Dongyun1   

  1. 1. Institute of Environment Engineering and Science, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, Hubei, China;
    2. State Key Laboratory of Biological Geology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China
  • Received:2018-04-18 Revised:2018-06-20 Online:2018-09-05 Published:2018-07-09
  • Supported by:

    supported by the Science and Technology of Hubei Province(2014BEC029).

摘要:

采用超声辅助Na2S-NaOH浸取体系对铜冶炼烟灰进行研究,在NaOH、Na2S与烟灰质量比0.4:1,液固比20:1,反应温度75℃,反应时间5 min,超声功率80 W,搅拌速率400 r·min-1条件下,As浸出率为88.81%,Cu浸出率为0.025%,实现了Cu和As的有效分离。采用该方法处理后,与单独碱浸相比,As浸出率提高9.21%,烟灰中As含量由0.85%降至0.58%,Cu含量由2.21%增至2.30%,且As浸出毒性浓度由12.66 mg·L-1降至2.84 mg·L-1,为烟灰的资源化利用创造了条件。超声辅助碱浸除砷动力学满足收缩核混合反应控制模型,表观活化能0.114 kJ·mol-1。XRD、XPS和重金属形态分析结果表明,超声空化作用可使As(Ⅲ)氧化为As(Ⅴ),有利于As浸出,故超声过程强化有利于Cu和As在碱浸体系中的选择性分离。

关键词: 铜冶炼烟灰, 超声波, 选择性浸出, 分离, 动力学, 界面, 氧化

Abstract:

Selective leaching of arsenic and copper in copper smelting dust was investigated by Na2S-NaOH leaching process with assistance of ultrasound method. The results showed that ultrasound wave could enhance alkaline leaching capacity and separation of arsenic and copper. The corresponding leaching ratios of arsenic and copper reached to 88.81% and 0.025% at the condition of 5 min discharge time, 80 W discharge power, mass ratio of Na2S, NaOH to ash 0.4:1, liquid-solid ratio 20:1, temperature 75℃ and stirring speed 400 r·min-1. The leaching process with Na2S-NaOH assistant with ultrasound reduced arsenic and increase copper content in soot from 0.85% to 0.58% and from 2.21% to 2.30%, and the leaching rate of As increased 9.21%, the leaching toxicity concentration of As was reduced from 12.66 mg·L-1to 2.84 mg·L-1, compared with alkaline leaching, respectively. Kinetics of alkaline assisted with ultrasound leaching of arsenic in copper smelting dust was controlled by hybrid reaction and its leaching kinetic equation followed the reacted shrinking core model, its apparent activation energy was 0.114 kJ·mol-1, and the reaction system was balanced within 5 min. XPS, XRD and speciation analysis of heavy metals indicated that ultrasound wave was able to oxidize As(Ⅲ) to As(Ⅴ), which was propitious to leaching of arsenic. In conclusion, ultrasound wave assisted Na2S-NaOH leaching process proved to be an efficient way of removing both arsenic and copper from soot, so the soot could be further utilized after toxic content reduction.

Key words: copper smelting dust, ultrasound wave, selective leaching, separation, kinetics, interface, oxidation

中图分类号: 

  • X756

[1] MONTENEGRO V, SANO H, FUJISAWA T. Recirculation of high arsenic content copper smelting dust to smelting and converting processes[J]. Minerals Engineering, 2013, 49(8):184-189.
[2] SÁNCHEZ D L C A, SÁNCHEZ-RODAS D, GONZÁLEZ C, et al. Geochemical anomalies of toxic elements and arsenic speciation in airborne particles from Cu mining and smelting activities:influence on air quality[J]. Journal of Hazardous Materials, 2015, 291(1):18-27.
[3] MANDAL B K, SUZUKI K T. Arsenic round the world:a review[J]. Talanta, 2002, 58(1):201-235.
[4] 刘海浪, 和森, 宋向荣, 等. 铜冶炼高砷烟尘浸出特性研究[J]. 安全与环境学报, 2017, 17(3):1124-1128. LIU H L, HE S, SONG X R, et al. On the leaching ability of high arsenic smoke-dust from the copper smelting processing[J]. Journal of Safety and Environment, 2017, 17(3):1124-1128.
[5] GUO X, SHI J, YI Y, et al. Separation and recovery of arsenic from arsenic-bearing dust[J]. Journal of Environmental Chemical Engineering, 2015, 3(3):2236-2242.
[6] TONGAMP W, TAKASAKI Y, SHIBAYAMA A. Selective leaching of arsenic from enargite in Na2S-NaOH media[J]. Hydrometallurgy, 2010, 101(1):64-68.
[7] LI Y, LIU Z, LI Q, et al. Alkaline oxidative pressure leaching of arsenic and antimony bearing dusts[J]. Hydrometallurgy, 2016, 166(1):41-47.
[8] RUIZ M C, GRANDON L, PADILLA R. Selective arsenic removal from enargite by alkaline digestion and water leaching[J]. Hydrometallurgy, 2014, 150(1):20-26.
[9] LEWIS A E. Review of metal sulphide precipitation[J]. Hydrometallurgy, 2010, 104(2):222-234.
[10] 丁松君, 林宝启, 王业光. 高砷铜矿硫化钠-氢氧化钠浸出脱砷研究[J]. 有色金属(冶炼部分), 1983, (4):26-29. DING S J, LIN B Q, WANG Y G. The study of high arsenic in copper ore by Na2S-NaOH leaching[J]. Nonferrous Metals(Extractive Metallurgy), 1983, (4):26-29.
[11] 吴玉林, 徐志峰, 郝士涛. 炼铜烟灰碱浸脱砷的热力学及动力学[J]. 有色金属(冶炼部分), 2013, (4):3-7. WU Y L, XU Z F, HAO S T. Thermodynamics and kinetics of alkaline leaching of arsenic in copper smelting dust[J]. Nonferrous Metals (Extractive Metallurgy), 2013, (4):3-7.
[12] ZHANG R L, ZHANG X F, TANG S Z, et al. Ultrasound-assisted HCl-NaCl leaching of lead-rich and antimony-rich oxidizing slag[J]. Ultrasonics Sonochemistry, 2015, 27:187-191.
[13] ONCEL M S, INCE M, BAYRAMOGLU M. Leaching of silver from solid waste using ultrasound assisted thiourea method[J]. Ultrasonics Sonochemistry, 2005, 12(3):237-42.
[14] AL-MEREY R, AL-MASRI M S, BOZOU R. Cold ultrasonic acid extraction of copper, lead and zinc from soil samples[J]. Analytica Chimica Acta, 2002, 452(1):143-148.
[15] 袁明亮, 赵国魂, 邱冠周. 砷金矿与锰银矿同时浸出中的超声强化作用[J]. 过程工程学报, 2003, 3(5):409-412. YUAN M L, ZHAO G H, QIU G Z. Effect of ultrasonic wave on simultaneous leaching of Mn-containing silver ore and As-containing gold ore[J]. The Chinese Journal of Process Engineering, 2003, 3(5):409-412.
[16] NEPPOLIAN B, PARK J S, CHOI H. Effect of Fenton-like oxidation on enhanced oxidative degradation of chlorobenzoic acid by ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2004, 11(5):273-279.
[17] YIN S, PEI J, JIANG F, et al. Ultrasound-assisted leaching of rare earths from the weathered crust elution-deposited ore using magnesium sulfate without ammonia-nitrogen pollution[J]. Ultrasonics Sonochemistry, 2018, 41:156-162.
[18] 李娜, 孙竹梅, 阮福辉, 等. 三氯化铁除砷(Ⅲ)机理[J]. 化工学报, 2012, 63(7):2224-2228. LI N, SUN Z M, RUAN F H, et al. Mechanism of removing arsenic(Ⅲ) with ferric chloride[J]. CIESC Journal, 2012, 63(7):2224-2228.
[19] DENG B Q, LIN Y J. Distribution and hazard prevention of lead and arsenic in copper smelting process[J]. World Nonferrous Metals, 2017, 12(2):12-13.
[20] YANG T Z, FU X X, LIU W F, et al. Hydrometallurgical treatment of copper smelting dust by oxidation leaching and fractional precipitation technology[J]. The Journal of the Minerals, Metals & Materials Society, 2017, 69(10):1982-1986.
[21] 王倩, 郭莉, 陈绍华, 等. 辉光放电等离子体辅助碱浸铜冶炼烟灰中铜砷分离[J]. 化工学报, 2017, 68(5):1932-1939. WANG Q, GUO L, CHEN S H, et al. Separation of copper and arsenic in copper smelting dust by Na2S-NaOH leaching assisted with glow discharge plasma[J]. CIESC Journal, 2017, 68(5):1932-1939.
[22] 国家环境保护总局. 固体废物浸出毒性浸出方法硫酸硝酸法:HJ/T 299-2007[S]. 北京:中国标准出版社, 2007. General Environmental Protection Administration. Solid waste-extraction procedure for leaching toxicity-sulfuric acid & nitric acid method:HJ/T 299-2007[S]. Beijing:Standards Press of China, 2007.
[23] 国家环境保护总局. 固体废物浸出毒性浸出方法醋酸缓冲溶液法:HJ/T 300-2007[S]. 北京:中国标准出版社, 2007. General Environmental Protection Administration. Solid waste-extraction procedure for leaching toxicity-acetic acid buffer solution method:HJ/T 300-2007[S]. Beijing:Standards Press of China, 2007.
[24] 国家环境保护总局. 固体废物浸出毒性浸出方法翻转法:GB 5086.1-1997[S]. 北京:中国标准出版社, 2007. General Environmental Protection Administration. Test method standard for leaching toxicity of solid wastes-roll over leaching procedure:GB 5086.1-1997[S]. Beijing:Standards Press of China, 1997.
[25] 国家质量监督检验检疫总局, 国家标准化管理委员会. 固体废物砷的测定二乙基二硫代氨基甲酸银分光光度法:GB/T 15555.3-1995[S]. 北京:中国标准出版社, 1996. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Solid waste-determination of arsenic-silver diethyl dithiocarbamate spectrophotometric method:GB/T 15555.3-1995[S]. Beijing:Standards Press of China, 1996.
[26] 国家环保总局. 水质65种元素的测定电感耦合等离子体质谱法:HJ 700-2014[S]. 北京:中国环境出版社, 2014. Chinese Environment Protection Bureau. Water quality-determination of 65 elements-inductively coupled plasma-mass spectrometry:HJ 700-2014[S]. Beijing:China Environmental Science Press, 2014.
[27] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002:133-136, 210-213, 246-248. Chinese Environment Protection Bureau. Inspects and Analysis Methods of Water and Wastewater[M]. 4th ed. Beijing:China Environmental Science Press, 2002:133-136, 210-213, 246-248.
[28] CHEN W F, QU Y, XU Z H, et al. Heavy metal (Cu, Cd, Pb, Cr) washing from river sediment using biosurfactant rhamnolipid[J]. Environmental Science and Pollution Research, 2017, 24(19):16344-16350.
[30] 易宇, 石靖, 田庆华, 等. 高砷烟尘氢氧化钠-硫化钠碱性浸出脱砷[J]. 中国有色金属学报, 2015, 25(3):806-814. YI Y, SHI J, TIAN Q H, et al. Arsenic removal from high-arsenic dust by NaOH-Na2S alkaline leaching[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(3):806-814.
[30] 国家环境保护总局. 危险废物鉴别标准通则:GB 5085.7-2007[S]. 北京:中国标准出版社, 2007. General Environmental Protection Administration. Identification standards for hazardous wastes-general specifications:GB 5085.7-2007[S]. Beijing:Standards Press of China, 2007.
[31] XIE F C, LI H Y, MA Y, et al. The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation[J]. Journal of Hazardous Materials, 2009, 170(1):430-435.
[32] AYTÜL H, VURAL G. Investigation and kinetic evaluation of the reactions of hydroxymethylfural with amino and thiol groups of amino acids[J]. Food Chemistry, 2018, 240(1):354-360.
[33] DOULAH M S. Mechanism of disintegration of biological cells in ultrasonic cavitation[J]. Biotechnology & Bioengineering, 2010, 19(5):649-660.
[34] ESKIN G I. Cavitation mechanism of ultrasonic melt degassing[J]. Ultrasonics Sonochemistry, 1995, 2(2):S137-S141.
[35] YUAN J, XIAO J, LI F C, et al. Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC[J]. Ultrasonic Sonochemistry, 2018, 41:608-618.
[36] ZHAO Q, LIU C J, SHI P Y, et al. Sulfuric acid leaching kinetics of South African chromite[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(3):233-240.
[37] KANG D C, ZOU Y H, CHENG Y P, et al. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing[J]. Ultrasonics Sonochemistry, 2016, 33(1):47-53.
[38] LI H, ZHANG K, ZHANG X, et al. Contributions of ultrasonic wave, metal ions, and oxidation on the depolymerization of cellulose and its kinetics[J]. Renewable Energy, 2018, 126(1):699-707.
[39] FU L K, ZHANG L B, WANG S X, et al. Synergistic extraction of gold from the refractory gold ore via ultrasound and chlorination-oxidation[J]. Ultrasonics Sonochemistry, 2017, 37(1):471-477.

[1] 郭婉婉, 李如月, 黄军. 交联菲罗啉负载铜催化剂用于合成三甲基苯醌[J]. 化工学报, 2019, 70(3): 929-936.
[2] 李德生, 张超, 邓时海, 胡智丰, 李金龙, 刘元辉. 基于铁基质高效催化还原污水中硝酸盐氮的实验研究[J]. 化工学报, 2019, 70(3): 1065-1074.
[3] 王耀武, 彭建平, 狄跃忠, 蒿鹏程. 铝电解槽干式防渗料在电解过程中的反应机理探讨[J]. 化工学报, 2019, 70(3): 1035-1041.
[4] 翟彦昭, 蔡安江, 张栋鹏, 韩超, 李力. 基于硅硅低温直接键合的MEMS打印喷头制作工艺[J]. 化工学报, 2019, 70(3): 1220-1226.
[5] 刘小诗, 邹得球, 贺瑞军, 马先锋. 氧化石墨烯/石蜡复合相变乳液的制备及对流传热特性[J]. 化工学报, 2019, 70(3): 1188-1197.
[6] 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
[7] 曾少娟, 尚大伟, 余敏, 陈昊, 董海峰, 张香平. 离子液体在氨气分离回收中的应用及展望[J]. 化工学报, 2019, 70(3): 791-800.
[8] 赫帅, 郭凤, 康国俊, 余剑, 任雪峰, 许光文. 络合-溶剂热法制备钯基催化剂及其催化氧化间二甲苯性能[J]. 化工学报, 2019, 70(3): 937-943.
[9] 周雪冰, 刘婵娟, 罗金琼, 梁德青. 甲烷水合物分解过程的微尺度测量[J]. 化工学报, 2019, 70(3): 1042-1047.
[10] 王超, 李长明, 皇甫林, 李萍, 杨运泉, 高士秋, 余剑, 许光文. 赤泥催化剂的制备及其对模拟烟气中微量氨的脱除性能[J]. 化工学报, 2019, 70(3): 1056-1064.
[11] 李龙, 葛天舒, 吴宣楠, 代彦军. 硅胶嵌入多孔纸基对苯蒸气吸附性能[J]. 化工学报, 2019, 70(3): 951-959.
[12] 王磊, 方桂英, 阳庆元. 金属-有机骨架材料CO2捕获性能的大规模计算筛选[J]. 化工学报, 2019, 70(3): 1135-1143.
[13] 段云彪, 徐存英, 王祥, 刘海, 黄梦婷. 反溶剂沉淀法合成Fe3+掺杂ZnO纳米结构及其可见光催化性能[J]. 化工学报, 2019, 70(3): 1198-1207.
[14] 朱顺, 郭琦, 张大伟, 杨庆春. 集成CO2高效利用的煤制乙二醇过程设计与系统分析[J]. 化工学报, 2019, 70(2): 772-779.
[15] 胡松, 李进龙, 李木金, 杨卫胜. 萃取精馏生产高纯度环氧丙烷的工艺研究[J]. 化工学报, 2019, 70(2): 670-677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!