化工学报 ›› 2019, Vol. 70 ›› Issue (1): 72-82.doi: 10.11949/j.issn.0438-1157.20180368

• 流体力学与传递现象 • 上一篇    下一篇

CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究

李静岩(),刘中良(),周宇,李艳霞   

  1. 北京工业大学环境与能源工程学院,传热强化与过程节能教育部重点实验室,北京 100124
  • 收稿日期:2018-04-03 修回日期:2018-11-07 出版日期:2019-01-05 发布日期:2018-12-13
  • 通讯作者: 刘中良 E-mail:lijingyan@emails.bjut.edu.cn;liuzhl@bjut.edu.cn
  • 作者简介:李静岩(1992—),男,硕士研究生,<email>lijingyan@emails.bjut.edu.cn</email>|刘中良(1958—),男,博士,教授,<email>liuzhl@bjut.edu.cn</email>

Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system

Jingyan LI(),Zhongliang LIU(),Yu ZHOU,Yanxia LI   

  1. Beijing University of Technology, College of Environmental and Energy Engineering, Education Ministry Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing 100124, China
  • Received:2018-04-03 Revised:2018-11-07 Online:2019-01-05 Published:2018-12-13
  • Contact: Zhongliang LIU E-mail:lijingyan@emails.bjut.edu.cn;liuzhl@bjut.edu.cn

摘要:

建立了CO2羽流地热系统(CPGS)热开采过程的热流固(THM)耦合模型,结合五点布井方案和多岩层三维几何模型,对一理想热储进行CPGS热开采数值模拟。分析了CPGS热开采过程中热储内的岩体变形特征及其对系统采热性能的影响,并研究了THM耦合下热储初始孔隙率对CPGS热开采的影响。结果表明:CPGS的运行会引起岩体的冷却收缩,造成热储表观体积的减小和热储孔隙率的增大,这有助于提高热储渗透率,加快地热开采速率,从而对地热开采产生积极影响。初始孔隙率越小,岩体变形对热开采的影响越明显。在假设初始渗透率相同的情况下,初始孔隙率越小,岩体变形引起的渗透率增幅越大,系统的热开采速率越快。

关键词: 岩层, 热储, 热流固耦合, 二氧化碳, 地热系统, 多孔介质, 数值模拟

Abstract:

A thermal-hydrologic-mechanical (THM) coupling model during the carbon dioxide plume geothermal system (CPGS) heat exploitation process was established. An ideal geothermal reservoir geothermal exploitation process was studied numerically, which combined with five-spot well pattern and a three-dimensional multi-rock formation geometric model. The rock deformation performance of CPGS geothermal exploitation process and the influence of rock deformation and geothermal reservoir initial porosity to CPGS heat exploitation were studied. The results showed that the rock significantly shrinkages during the process of the CPGS operation, reduces the volume, and increases the porosity of the reservoir. The deformation also helps increasing the permeability of thermal reservoir, accelerating the rate of exploitation process, and thus enhancing the geothermal exploitation process. While the porosity was lower, the influence of rock deformation was more obvious. Under the consumption that the initial permeability is the same, the smaller the initial porosity, the greater the increase in permeability caused by rock deformation, and the faster the thermal recovery rate of the system.

Key words: rock formation, geothermal reservoir, THM coupling, carbon dioxide, geothermal system, porous media, numerical simulation

中图分类号: 

  • TK 124

图1

THM模型三场耦合关系"

图2

五点式布井方案"

图3

储层模型几何尺寸"

表1

各岩层水文物性参数"

参数热储盖岩和基岩
厚度/m100500
孔隙率0.030
渗透率/m25 × 10-14N/A
密度/(kg·m-3)26002600
比热容/(J·(kg·K)-1)10001000
热导率/(W·(m·K)-1)2.52.5
杨氏模量/GPa1717
泊松比0.250.25
Biot系数0.470.47
热膨胀系数/K-11×10-51 × 10-5
残余水饱和度0.3N/A
残余气饱和度0.05N/A
Brooks-Corey系数2N/A
孔隙注入压力/kPa20N/A

图4

不同网格数时热储B点处岩体温度随时间的变化曲线"

图5

不同时刻岩体各向位移分布"

图6

不同时刻热储孔隙率/渗透率的分布"

图7

不同时刻的热储温度等值面分布"

图8

生产流体温度随时间的变化曲线"

图9

生产流体质量流量随时间的变化曲线"

图10

系统热提取率随时间的变化曲线"

图11

不同初始孔隙率下井间连线AB上的孔隙率分布(系统运行至15年时)"

图12

不同初始孔隙率下井间连线AB上的渗透率比率分布(系统运行至15年时)"

图13

不同初始孔隙率下生产流体温度随时间变化曲线"

图14

不同初始孔隙率下生产流体质量流量"

图15

不同初始孔隙率下系统热提取率随时间变化曲线"

1 HollowayS. Storage of fossil fuel-derived carbon dioxide beneath the surface of the Earth[J]. Annual Review Energy Environment, 2001, 26: 145-166.
2 WestJ M, PearceJ, BenthamM, et al. Issue profile: environmental issues and the geological storage of CO2[J]. European Environment, 2005, 15: 250-259.
3 GentzisT. Subsurface sequestration of carbon dioxide—an overview from an Alberta (Canada) perspective[J]. International Journal of Coal Geology, 2000, 43:287-305.
4 GoughC. State of the art in carbon dioxide capture and storage in the UK: an experts review[J]. International Journal of Greenhouse Gas Control, 2008, 2:155-168.
5 HollowayS. Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option[J]. Energy, 2005, 30:2318-2333.
6 MetzB, DavidsonO R, BoschP R, et al. Contribution of working group Ⅲ to the fourth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2007.
7 BrownD. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water[C]//Proceedings of the Twenty-fifth Workshop on Geothermal Reservoir Engineering. Stanford,2000: 233-238.
8 PruessK. Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35: 351-367.
9 PruessK. Enhanced geothermal systems (EGS) comparing water with CO2 as heat transmission fluids[R]. Berkeley: Lawrence Berkeley National Laboratory, 2007.
10 PruessK. On the feasibility of using supercritical CO2 as heat transmission fluid in an engineered hot dry rock geothermal system[C]//Proceedings of the Thirty-first Workshop on Geothermal Reservoir Engineering. Stanford, 2006.
11 PruessK. On production behavior of enhanced geothermal systems with CO2 as working fluid[J]. Energy Conversion and Management, 2008, 49(6): 1446-1454.
12 MajerE L, BariaR, StarkM, et al. Induced seismicity associated with enhanced geothermal systems[J]. Geothermics, 2007, 36: 185-222.
13 RandolphaJ B, SaarM O. Coupling geothermal energy capture with carbon dioxide sequestration in naturally permeable, porous geologic formations: a comparison with enhanced geothermal systems[J]. GRC Trans., 2010, 34:433-438.
14 RandolphaJ B, SaarM O. Combining geothermal energy capture with geologic carbon dioxide sequestration [J]. Geophysical Research Letters, 2011, 38: L10401.
15 RandolphaJ B, SaarM O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: implications for CO2 sequestration[J]. Energy Procedia, 2011, 4: 2206-2213.
16 ZhangL, EzekielJ, LiD, et al. Potential assessment of CO2 injection for heat mining and geological storage in geothermal reservoirs of China[J]. Applied Energy, 2014, 122: 237-246.
17 XuT, FengG, ShiY. On fluid-rock chemical interaction in CO2-based geothermal systems[J]. Journal of Geochemical Exploration, 2014, 144: 179-193.
18 GhassemiA, ZhouX. A three-dimensional thermo-poroelastic model for fracture response to injection/extraction in enhanced geothermal systems [J]. Geothermics, 2011, 40(1): 39-49.
19 KohJ, RoshanH, RahmanS S. A numerical study on the long term thermo-poroelastic effects of cold water injection into naturally fractured geothermal reservoirs [J]. Computers and Geotechnics, 2011, 38(5): 669-682.
20 JingY, JingZ, Willis-RichardsJ, et al. A simple 3-D thermoelastic model for assessment of the long-term performance of the Hijiori deep geothermal reservoir [J]. Journal of Volcanology & Geothermal Research, 2014, 269: 14-22.
21 曹文炅, 黄文博, 蒋方明. 地下热流固耦合对EGS热开采的影响[J]. 新能源进展, 2015, 3(6): 444-451.
CaoW J, HuangW B, JiangF M. The thermal-hydraulic-mechanical coupling effects on heat extraction of enhanced geothermal systems [J]. Journal of Circuits and Systems, 2015, 3(6): 444-451.
22 HicksT W, PineR J, Willis-RichardsJ, et al. A hydro-thermo-mechanical numerical model for HDR geothermal reservoir evaluation [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1996, 33(5): 499-511.
23 TaronJ, ElsworthD. Thermal–hydrologic–mechanical–chemical processes in the evolution of engineered geothermal reservoirs [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5): 855-864.
24 TaronJ, ElsworthD, MinK B. Numerical simulation of thermal-hydrologic-mechanical- chemical processes in deformable, fractured porous media [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5): 842-854.
25 McDermottC I, RandriamanjatosoaA R L, TenzerH, et al. Simulation of heat extraction from crystalline rocks: the influence of coupled processes on differential reservoir cooling [J]. Geothermics, 2006, 35(3): 321-344.
26 李静岩, 刘中良, 周宇, 等. 热储上下岩层热补偿作用对CO2羽流地热系统性能的影响[J]. 化工学报, 2017, 68(12): 4526-4536.
LiJ Y, LiuZ L, ZhouY, et al. Influence of thermal compensation of geothermal reservoir rock formation on CO2 plume geothermal system performance [J]. CIESC Journal, 2017, 68(12): 4526-4536.
27 FagerlundF F, NiemiA, OdenM. Comparison of relative permeability-fluid saturation-capillary pressure relations in the modelling of non-aqueous phase liquid infiltration in variably saturated,layered media[J]. Advances in Water Resources, 2006, 29(11): 1705-1730.
28 李培超, 孔祥言, 卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展, 2003, 18(4): 419-426
LiP C, KongX Y, LuD T. Mathematical modeling of flow in saturated porous media on account of fluid-solid coupling effect[J]. Journal of Hydrodynamics, 2003, 18(4): 419-426.
29 戴永浩, 陈卫忠, 伍国军, 等. 非饱和岩体弹塑性损伤模型研究与应用[J]. 岩石力学与工程学报, 2008, 27(4): 728-735.
DaiY H, ChenW Z, WuG J, et al. Study on elastoplastic damage model of unsaturated rock mass and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 728-735.
30 魏铭聪, 杨冰, 许天福, 等. 二氧化碳羽流地热系统中井间距和储层渗透率对热提取率的影响:以松辽盆地为例[J]. 地质科技情报, 2015, 34(2): 188-193.
WeiM C, YangB, XuT F, et al. Effects of well spacing and reservoir permeability on heat extraction in CO2 plume geothermal system: a case study of Songliao Basin[J]. Geological Science and Technology Information, 2015, 34(2): 188-193.
31 杨艳林, 靖晶, 王福刚, 等. CO2增强型地热系统中的井网间距优化研究[J]. 太阳能学报, 2014, (7): 1130-1137.
YangY L, JingJ, WangF G, et al. Optimal design of well spacing on CO2 enhanced geothermal[J]. Acta Energiae Solaris Sinica, 2014, (7):1130-1137.
32 张俊虎, 刘君. 煤层气井网布置优化设计的探讨[J]. 科技情报开发与经济, 2008, (10):210-212.
ZhangJ H, LiuJ. Probe into the optimal design of coal-bed methane well network[J]. Sci-tech Information Development & Economy, 2008, (10):210-212.
[1] 陈华, 柳秀丽, 杨亚星, 钟丽琼, 王蕾, 高娜. 泡沫金属铜/石蜡相变蓄热过程的数值模拟[J]. 化工学报, 2019, 70(S1): 86-92.
[2] 冯能莲, 马瑞锦, 陈龙科, 董士康, 王小凤, 张星宇. 新型蜂巢式液冷动力电池模块传热特性研究[J]. 化工学报, 2019, 70(5): 1713-1722.
[3] 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733.
[4] 张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
[5] 李文玉, 孙亮亮, 袁艳平, 曹晓玲, 向波. 太阳能热水相变炕体蓄放热性能及影响因素[J]. 化工学报, 2019, 70(5): 1761-1771.
[6] 颜建国, 朱凤岭, 郭鹏程, 罗兴锜. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787.
[7] 杨俊兰, 宁淑英. 紧凑通道内CO2/润滑油混合物沸腾换热特性研究[J]. 化工学报, 2019, 70(5): 1772-1778.
[8] 刘亚敏, 彭蕾, 苏凤英, 王湘湘, 黄艺真, 林在春, 喻晓静, 裴义山. 多孔胺基化氧化石墨烯基材料对CO2的吸附性能研究[J]. 化工学报, 2019, 70(5): 2016-2024.
[9] 王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308.
[10] 朱兵国, 吴新明, 张良, 孙恩慧, 张海松, 徐进良. 垂直上升管内超临界CO2 流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290.
[11] 韦攀, 喻家帮, 郭增旭, 杨肖虎, 何雅玲. 环形管填充金属泡沫强化相变蓄热可视化实验[J]. 化工学报, 2019, 70(3): 850-856.
[12] 田涛, 刘冰, 石梅生, 安亚雄, 马军, 张彦军, 徐新喜, 张东辉. 双塔微型变压吸附制氧机实验和模拟[J]. 化工学报, 2019, 70(3): 969-978.
[13] 吴晅, 李晓瑞, 马骏, 秦梦竹, 周雅慧, 李海广. 不同管口浸没方式下气泡生成行为特性[J]. 化工学报, 2019, 70(3): 901-912.
[14] 周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
[15] 陈传刚, 丁雪兴, 陆俊杰, 张伟政, 陈金林. 摩擦副界面微造型序列对气体密封性能的影响[J]. 化工学报, 2019, 70(3): 1016-1026.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 凌丽霞, 章日光, 王宝俊, 谢克昌. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] 雷志刚, 龙爱斌, 贾美如, 刘学义. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] 粟海锋, 刘怀坤, 王凡, 吕小艳, 文衍宣. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] 王建林, 薛尧予, 于涛, 赵利强. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] 高瑞昶,宋宝东,袁孝竞. 气液两相逆流状态下金属板波纹填料塔内液体流动分布 [J]. , 1999, 50(1): 94 -100 .
[7] 苏亚欣,骆仲泱,岑可法. 换热器肋片的最小熵产优化研究 [J]. , 1999, 50(1): 118 -124 .
[8] 罗小平,邓先和,邓颂九. 空心环支承轴流式换热器壳程流体阻力系数 [J]. , 1999, 50(1): 130 -135 .
[9] 金文正,高广图,屈一新,汪文川. 甲烷、苯无限稀释水溶液亨利常数的Monte Carlo分子模拟计算 [J]. , 1999, 50(2): 174 -184 .
[10] P>李庆钊;赵长遂;陈晓平;武卫芳;李英杰/P>.

O2/CO2气氛煤焦的燃烧及其孔隙结构变化

[J]. , 2008, 59(11): 2891 -2897 .